
A Multimedia DSP processor design

Master Thesis by

Vladimir Gnatyuk & Christian Runesson

LiTH-ISY-EX-3530-2004

Supervisor: Dake Liu

Examiner: Dake Liu

Linköping, 2004

Avdelning, Institution
Division, Department

Institutionen för systemteknik
581 83 LINKÖPING

Datum
Date
2004- 03- 29

Språk
Language

Rapporttyp
Report category

ISBN

Svenska/Swedish
X Engelska /English

Licentiatavhandling
X Examensarbete

ISRN LITH- ISY- EX- 3530- 2004

C- uppsats
D- uppsats

Serietitel och serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http: / / w w w.ep.liu.se /exjobb/isy /2004 /3530/

Titel
Title

Design av en Multimedia DSP Processor

A Multimedia DSP Processor Design

Författare
 Author

Vladimir Gnatyuk & Christian Runesson

Sammanfattning
Abstract
This Master Thesis presents the design of the core of a fixed point general purpose multimedia DSP
processor (MDSP) and its instruction set. This processor employs parallel processing techniques
and specialized addressing models to speed up the processing of multimedia applications.

The MDSP has a dual MAC structure with one enhanced MAC that provides a SIMD, Single
Instruction Multiple Data, unit consisting of four parallel data paths that are optimized for
accelerating multimedia applications. The SIMD unit performs four multimedia- oriented 16- bit
operations every clock cycle. This accelerates computationally intensive procedures such as video
and audio decoding. The MDSP uses a memory bank of four memories to provide multiple
accesses of source data each clock cycle.

Nyckelord
Keyword
DSP processor, multimedia, SIMD, Dual MAC, assembler, simulator

Abstract

This Master Thesis presents the design of the core of a fixed point general
purpose multimedia DSP processor (MDSP) and its instruction set. This
processor employs parallel processing techniques and specialized
addressing models to speed up the processing of multimedia applications.

The MDSP has a dual MAC structure with one enhanced MAC that provides a
SIMD, Single Instruction Multiple Data, unit consisting of four parallel data
paths that are optimized for accelerating multimedia applications. The SIMD
unit performs four multimedia-oriented 16-bit operations every clock cycle.
This accelerates computationally intensive procedures such as video and
audio decoding. The MDSP uses a memory bank of four memories to provide
multiple accesses of source data each clock cycle.

Acknowledgments

This work have been done for the Division of Computer Engineering,
Department of Electrical Engineering at Linköping University, Sweden.
We want to thank all the people who were involved in our work during all
this weeks for their help, assistance and the instance to the authors.

We want to give our special thanks to:

1. Professor Dake Liu, our supervisor, for such an interesting topic, for
science advices and for opportunity to study the essence of the DSP
processor design.

2. Ph.D student Eric Tell, for assisting and helpful advices during the work.

3. Ph.D student Daniel Wiklund, for solving some computer related
problems.

List of Acronyms

Acronym Description
ACR ACcumulator Register

AGU Address Generation Unit

ALU Arithmetic and Logic Unit

APR Address Pointer Register

ASP Analog Signal Processing

ASIP Application Specific Instruction set Processor

BAR Bottom Address Register

BDTI Berkley Design Technologies Inc

BISON Fast YACC GNU's version

BRA Bit-Reversed Addressing

DCT Discrete Cosine Transform

DMAC Dual Multiple and ACcumulate

DSP Digital Signal Processing

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLEX Fast LEX GNU's version

FSM Finite State Machine

GPR General Purpose Register

GNU A complete UNIX-like operation system

HDL Hardware Descriptor Language

ISS Instruction Set Simulator

LEX Lexical analyzer tool

LSB Least Significant Bit

MAC Multiple and ACcumulate

MAO Memory Access Order

MDSP Multimedia Digital Signal Processing

MP3 MPEG layer III

MPEG Motion Picture Expert Group

MSB Most Significant Bit

Acronym Description
PA Parallel Accumulator Register

PC Program Counter

PDOT Parallel DOT multiplication product

PSAD Parallel Sum of Absolute Differences

SA Serial Accumulator Register

SIMD Single Instruction Multiple Data

SoC System-on-Chip

TAR Top Address Register

VHDL Very high speed integrated circuit Hardware Descriptor Language

YACC Yet Another Compiler-Compiler tool

Contents

List of Figures 1
List of Tables 3
CHAPTER 1 Introduction 5

1.1 Why DSP? 5
1.2 DSP Processors 6
1.3 Multimedia Processor 7
1.4 About this thesis 7

CHAPTER 2 Processor Design Flow 9
2.1 Preview 9
2.2 Specification Analysis 10
2.3 Instruction Set Design and Architecture Planning 10
2.4 Instruction Set Simulator 10
2.5 Benchmarking 11
2.6 Architecture Design 11
2.7 RTL Design 12
2.8 Verification 12

CHAPTER 3 Architecture Design 13
3.1 Preview 13
3.2 Research for Media Applications 13
3.3 Data Path Organization 18

3.3.1 Serial Data Path 18
3.3.2 Parallel Data Path 19
3.3.3 Register File 20

3.4 Control Path 24
3.4.1 Overall Description 24
3.4.2 Design for Addressing 25
3.4.3 Pipeline Structure 28

3.5 Data Memory 31
3.6 Flags 32

3.6.1 Model 32
3.6.2 Hardware realization 33
3.6.3 Conditions 33

CHAPTER 4 Addressing Design 35
4.1 Preview 35

4.2 Hardware Model 35
4.3 Addressing Model 36
4.4 Addressing Modes 38

CHAPTER 5 Instruction Set Design 43
5.1 Preview 43
5.2 Hardware Description 44

5.2.1 The STATUS register 44
5.2.2 Partitioning between configurable and programmable 45
5.2.3 Additional specifiers in the status register 45

5.3 MOVE 47
5.3.1 MOVE model 47
5.3.2 MOVE instruction word 47
5.3.3 MOVE addressing model 50

5.4 ALU 52
5.4.1 ALU model 52
5.4.2 ALU instruction word 53
5.4.3 ALU addressing model 56

5.5 MAC 58
5.5.1 MAC model 58
5.5.2 MAC instruction word 59
5.5.3 MAC addressing model 61

5.6 DMAC 63
5.6.1 DMAC model 63
5.6.2 DMAC instruction word 64
5.6.3 DMAC addressing model 67

5.7 SIMD 70
5.7.1 SIMD model 70
5.7.2 SIMD instruction word 71
5.7.3 SIMD addressing model 75

5.8 PROGRAM FLOW 78
5.8.1 Program Flow model 78
5.8.2 Program Flow instruction word 79

CHAPTER 6 Assembler Design 81
6.1 Preview 81
6.2 Tools Description 81
6.3 Assembler Design Flow 84
6.4 Assembler Features 85
6.5 Results 86

CHAPTER 7 Instruction Set Simulator Design 87
7.1 Preview 87
7.2 Simulator Model 87
7.3 The Start Procedure 88
7.4 The Load Procedure 89
7.5 The Execute Procedure 90
7.6 Results 93

CHAPTER 8 Benchmarking 95
8.1 Preview 95
8.2 Benchmarking Strategy 95
8.3 Results 96

CHAPTER 9 Conclusions 97
9.1 Results 97
9.2 Future work and improvements 98

Appendix A.1 Serial Data Path 99
Appendix A.2 Parallel Data Path 101
Appendix B.1 A guide to the instruction set 103
Appendix B.2 Instructions Description 123
Bibliography 207

List of Figures

Figure Description Page
Figure 2.1 The DSP processor design flow 9

Figure 3.1 A top-level Data Path architecture 14

Figure 3.2 The six data paths MDSP structure 16

Figure 3.3 General and special purposes registers space 21

Figure 3.4 Register File structure 22

Figure 3.5 Control Path structure 24

Figure 3.6 Address Generation Logic structure 27

Figure 3.7 Pipeline structure 28

Figure 3.8 Variable 5- and 6-step pipeline stages 29

Figure 3.9 Pipeline data hazard 30

Figure 3.10 Data memory structure 31

Figure 3.11 The p_flags register 32

Figure 3.12 The s_flags register 32

Figure 5.1 The status register, STATUS 45

Figure 5.2 MOVE instruction word 48

Figure 5.3 The MOVE addressing flow graph 50

Figure 5.4 ALU instruction word 53

Figure 5.5 The ALU addressing flow graph 56

Figure 5.6 MAC instruction word 59

Figure 5.7 The MAC addressing flow graph 61

Figure 5.8 DMAC instruction word 65

Figure 5.9 The DMAC addressing flow graph 68

Figure 5.10 SIMD instruction word 72

Figure 5.11 The SIMD addressing flow graph 76

Figure 5.12 P_FLOW instruction word 79

Figure 6.1 Compiler design flow diagram 83

Figure 6.2 Assembler Design Flow 84

Figure 7.1 The start procedure 88

Figure 7.2 The load procedure 89

�

Figure Description Page
Figure 7.3 The execute procedure 92

�

List of Tables

Table Description Page
Table 3.1 Condition table 33

Table 4.1 Addressing with an individual offset of two 37

Table 4.2 Addressing modes 38

Table 4.3 Example of BRA with masking 40

Table 4.4 Selection of the table register 40

Table 4.5 Description of the TABLE field 41

Table 5.1 MOVE instruction list 48

Table 5.2 MOVE addressing modes 51

Table 5.3 Extended addressing modes 51

Table 5.4 LOGIC instruction list 54

Table 5.5 ARITHMETIC instruction list 54

Table 5.6 SHIFT instruction list 55

Table 5.7 ALU addressing modes 57

Table 5.8 MAC instruction list 60

Table 5.9 MAC addressing modes 62

Table 5.10 DMAC instruction list 66

Table 5.11 DMAC addressing modes 69

Table 5.12 Data path enabling via MAO when using the 8-bit mode 73

Table 5.13 Data path enabling via MAO when using the 16-bit mode 73

Table 5.14 SIMD instruction list 75

Table 5.15 SIMD addressing modes 77

Table 5.16 P_FLOW instruction list 80

Table 5.17 Description of the conditional instructions 80

Table 8.1 FIR benchmark 96

�

�

1
Introduction

1.1 Why DSP?

Digital Signal Processing (DSP) has recently become an available technology
in many areas. Many products that were historically based on analog or
micro-controller systems are now being migrated to DSP microprocessor-
based systems. Today, almost all new system designs are DSP-based and the
number of DSP-based systems are increasing rapidly. Almost every digital
system could be referred to as being DSP-based, but we will refer only to
those systems which provide mathematical and media algorithms as their
kernel operations. They consist of digital filters algorithms, sound and
image processing algorithms, coding, statistic and coherence processing.

The increasing usage of computer system for communications and mobile
phones for people's relations have made this industrial area as a one of the
greatest in terms of growth. Since the first commercially successful DSP
processor in the 1980, the dozens and different types of DSP processors
have dramatically increased [3]. The brief view on the market forecasts give
us the constant growth of DSP processors in the total amount of sold chips.
From $4.6B in 2001 up to $14B in 2005 for user programmable DSP chips
[4]. The percentage of global sales of DSP processors and micro controllers
(MCU) is more then 90% of all processors sold in 2002 [2].

This forecast is reasonable because the DSP solutions enjoy several
advantages over the analog signal processing (ASP) ones. The number of
applications could be processed only by DSP or could be implemented in an
inefficient and more expensive way via ASP. This fact is of course one of the
most significant. For instance, applications like speech synthesis and
recognition and high-speed data communications are well suitable for DSP.

�

The predictable behavior, re-programmability and the sizes of the systems
are also very important and they do all benefit from using DSP.

1.2 DSP processors

A DSP processor is a processor that performs one or several DSP algorithms.
They were designed to perform mathematical algorithms in real time
domain. This is a main reason for the DSP processors development.

A DSP processor is, because of the nature of DSP algorithms, a processor
mainly oriented on multiply-accumulate operations. The number of
operations in DSP are similar to each other and this gives the opportunity to
provide efficient parallelization of the calculations. Next beneficial feature
of a DSP processor is the multiple-access memory architecture to improve
processing. There are several ways to organize the support for simultaneous
accesses to multiple memory locations. It can be done with the use of multi-
ported memories, multiple buses and multiple independent memories in a
memory bank. Next significant and often used feature for speeding up the
data processing is to use one or more dedicated address generation units
and, usually, with special addressing models. This feature gives multiple
address calculations at the same instruction cycle. Some special address
models are designed exclusively for speeding up certain DSP algorithms.

There are two big categories of DSP processors that are dominating, the
general purpose DSP processors and the Application Specific Instruction set
Processor (ASIP). They also could be specified by the used algorithms,
sample rate, clock rate and arithmetic types. A general purpose DSP
processor gives enough flexibility, design environment support, and
application references. For some reasons like critical requirements on the
silicon area, power consumption, performance and especially when a
System-on-Chip (Soc) solution is required, we need to use an ASIP DSP
processor instead of general purpose DSP processor [2].

�

1.3 Multimedia processor

A Multimedia Processor is an application specific DSP processor which
performs a number of multimedia algorithms. The following classes of DSP
algorithms might be referred to as multimedia types:
� Speech coding and decoding
� Speech recognition
� Speech identification
� High-fidelity audio encoding and decoding
� Modem algorithms
� Audio mixing and editing
� Voice synthesis
� Image compression and decompression
� Image compositing

A general purpose Multimedia DSP (MDSP) processor should, of course,
cover all of the above. Naturally, no processor can meet the needs of all or
even the most of the applications, and that is why it's a designer's task to
find the optimal trade-off between functional covering and performance,
cost, integration, power consumption, and other factors.

1.4 About this thesis

The purpose of this project was to design a programmable Multimedia DSP
processor, according to the given specification, for the Division of Computer
Engineering, Department of Electrical Engineering at Linköping University,
Sweden. This work started at the processor research step, with analysis of a
given specification, and stopped at the benchmarking design step because of
the lack of time in this 20 weeks of length job. The architecture, the
instruction set and the coding solutions have been designed as flexible as
possible for future improvements and corrections.

This introductory chapter explains what a DSP is, why the vendors are using
it and also gives the main definitions and observations. Chapter 2 describes
how the DSP processor should be designed. It introduces the processor
design flow chart and gives a brief description for each step. Chapter 3
presents the detailed description of the Architecture Design step, all
research issues and the designers features for optimal specification

�

implementation are specified here. The address generation strategy and
existing addressing models are described in Chapter 4. The designed
Instruction Set is presented in Chapter 5. Chapter 6 describes the assembler
design and Chapter 7 shows the simulator design. The Benchmarking design
step is described in Chapter 8. Finally we will analyze the results and will
give our conclusions in Chapter 9.

Appendix A.1 shows the Serial Data Path architecture.
Appendix A.2 shows four Parallel Data Paths architecture.
Appendix B.1 contains the guide to the instruction set.
Appendix B.2 has a complete description of all instructions for this
processor.

�

2
Processor Design Flow

2.1 Preview

This chapter gives an overview of the design flow of any DSP processor, as
well as some certain explanations especially for the designed one. The
schematic of the design flow is shown in figure 2.1:

Figure 2.1: The DSP processor design flow

	

��
���
�����
��������

������
���������������
���
����
�������������

����� ����!�������
�����
�������������

"��
����#���

��
����
�����������

$%&�������

'�����
�����

%������

$�������
���

2.2 Specification Analysis

The design analysis have started from reading and understanding of the
given specification. The following issues have been researched:
� Flexibility of supported operations
� Number of computing resources
� Memory capacity
� Flexible and multiple memory accesses
� Parallelism of the architecture
� Low power design
� Opportunities for future accelerations

2.3 Instruction Set Design and Architecture Planning

During this design step the designers should decide what data types and
what instructions that should be used in the processor. It mainly depends
on what tasks and operations the future processor is designed for. At this
design step the instruction types and formats should also be defined and
fixed. All these activities should be provided within the processor
architecture planning at a top level.

Instruction format strongly depends on the architecture topology, number
of processing units, memory banks, interconnections and relations between
them. In addition, the designers should always match the possibility of
implementing each instruction according to the available hardware. After
this step the, top-level processor architecture and the detailed instruction
set are defined. These activities are described in chapters 3, 4 and 5.

2.4 Instruction Set Simulator

The instruction set simulator is a behavioral model of the processor that is
written in some high-level language [1]. It needs to check the designed
instruction set from the functional point of view. Each instruction should be
implemented and verified. In conjunction with the benchmarking step, the
simulator should give the answer if the designed instruction set and
temporal architecture covers the processor's performance requirements or
not.

�(

The behavioral model of the processor consists of two parts, the assembler
program and the instruction set simulator. The assembler firstly translates
the lexical code (assembly program) to a suitable form for the existed
hardware as hexadecimal code. In reality this hexadecimal code should
generate the control signals to provide all necessary computations in the
data path. The instruction set simulator is virtually responsible for this.

A detailed description of the assembler design is given in chapters 6 and the
instruction set simulator design is given in chapter 7.

2.5 Benchmarking

Now, when the instruction set simulator is ready, it is time to write the real
code for the future processor and pass it through the processor. Usually the
most popular or most significant applications for this processor are used to
compare the results with vendors or maybe with some other related works.

This step verifies the designed instruction set, if it offers sufficient
performance to fulfill the requirements, that were set up during
specification analysis and architecture planning. If it does we could talk
about the release of the instruction set. If it does not, we have to go back to
the instruction set design level and modify it. Please refer to chapter 8 for
details.

2.6 Architecture Design

This step is a real hardware implementation, using the top-down approach.
All computational units, buses, control blocks, other elementary and
auxiliary units are defined at the register-transfer level. All blocks,
processing elements and data chains must follow the hardware limitations
and instruction set requirements.

��

2.7 RTL Design

A modern implementation method is to use one of the hardware descriptor
languages (HDL). The most usable languages are VHDL and Verilog. These
languages let the programmer write synthesizeable code. It might be very
useful for testing prototypes.

2.8 Verification

Verification is a very important and a very time consuming design step. It
can consume up to 80% of the complete design time for some systems. This
step is the designers final one before manufacturing. The verification is
divided into the functional and the physical verification. The first one
verifies the logical correctness of the HDL code, the second one handles the
physical parameters, for example time constrains [2]. If there were no errors
during the verification process, the RTL implementation version of the
processor is released. Otherwise we have to modify the RTL code or for
some reasons even change the architecture. See the design flow diagram in
figure 2.1.

Because of the time deficit and the specific type of this 20 weeks length job,
the architecture of the processor unfortunately have not been fixed and
implemented yet.

��

3
Architecture Design

3.1 Preview

A DSP processor can be divided into its processor core and its peripherals.
In this job we have concentrated on the processor core design. The core
might be divided later into the data path, the control path, the memory, the
buses, and the flags.

This chapter describes the architecture issues, the design decisions and
their reasonings. It also gives the overall design conception and a detailed
research process.

3.2 Research for Media Applications

According to the design specification we have designed a multimedia DSP
processor (MDSP). This is a DSP processor that has special architecture and
hardware features to accelerate the media applications. The data have a
fixed-point representation. The general structure of the processor is a
Harvard's one, with different memories for programs and for data.

There are several architectural DSP features. Most of the DSP applications
require high performance in repetitive computation and data intensive
tasks. The research is aimed for designing of an efficient architecture, for
the general purpose multimedia processor, and is concentrated on:

1) Fast Multiply-Accumulate (MAC) operations (the most DSP algorithms,
including filtering and transforms, are multiplication-intensive).

2) Multiple memory access architecture (this property might be very
efficient in cases where the operations could be accelerated by reading

��

multiple data items at the same instruction cycle).
3) Specialized address models (efficient data managing and special data

types in the DSP applications).

The designers should not forget about an efficient Control Path and of the
input/output organization. In this work we did not concentrate on them.

Let us look closer at these issues. The most often-used DSP algorithms, such
as digital filters and Fourier transforms, need the ability to perform a MAC
operation in one instruction cycle. The processor must have a good enough
hardware to perform it, in other words at least one MAC unit. For
acceleration of these media applications a processor could have several
computational blocks. They are integrated into the main arithmetic
processing unit, also called the data path. According to the functional
coverage, the processor should be flexible enough to support voice, audio,
moving picture decoding and still picture encoding/decoding. The extra
computing resources and memory capacities should be available for the
future applications while the job is running.

We have stopped at the dual MAC (DMAC) architecture. The top-level data-
path architecture is shown in figure 3.1. First, each MAC had the same
structure. It operates with data from the memory and from the Register File.
The data length is 16 bits and the same applies to the memory.

Figure 3.1: A top-level Data Path architecture

��

Because the media data have an 8-bit data length representation, the further
research was aimed at the 8-bit operations acceleration. The most common
media tasks as motion estimation and motion compensation require 8-bit
additions and multiplications. This was the main reason for our architecture
improvement, the extended MAC0 structure. The extra computational
hardware has been added to employ parallel processing techniques such as
single instruction multiple data (SIMD).

Four additional MAC units have been integrated into MAC0 for parallel
computations. At this moment, six computational paths exist. Four parallel
data paths, specialized for media applications, and two serial data paths, see
figure 3.2:

��

Each parallel data path provides eight-by-eight bit multiplication and then
provides a 20-bit accumulation. The hardware structure of the parallel and
the serial data paths are the same (see Appendix A.1). The only difference is
the computational bit length and the extra hardware for performing special

��

Figure 3.2: The six data paths MDSP structure

instructions like PSAD and PDOT. Chapter 5 gives a detailed description of
these instructions. Each parallel data path has a final 20-bit result and each
serial data path has a 40-bit result. These bit lengths have been got by
adding the guard bits to a native length result to prevent overflow errors
during the hardware loops. For the large loops, and according to general
purpose preference of this MDSP processor, we found that four guard bits
for the final result in the parallel data paths, and eight guard bits for the
serial ones are enough.

In order to speed up media applications, we divided the memory bank into
four memories. This gives us the ability to read up to four different data at
the same instruction cycle and of course to write them back. A theoretical
speed up of up to four times can be achieved for long loop tasks. The
memory access strategy is as follows:

� All data paths can read data from any memory
� The serial data path can write data to any memory in the memory bank

while the parallel data paths only can write to its own memory. For
instance P_dp0 writes to memory0 (M0)

All wires are of 16-bit width, the native processor length. In case of parallel
computations, when the SIMD mode is enabled, data can be represented in
two ways:

1) As two 8-bit operands in one 16-bit address space to provide eight by
eight operations.

2) As one 16-bit operand in each memory address space.

In conclusion, this processor may:
� Process 8-bit media data in SIMD mode
� Process 16-bit data in single and Dual MAC modes
� Provide mixed usage of both of the above modes (DMAC) for as much

processing acceleration as possible
� Provide any memory access order in SIMD and DMAC modes using the

special address calculation techniques, that are described in chapter 4.

��

3.3 Data Path Organization

The data path of the designed MDSP consists of two serial data paths and
four parallel data paths. The Register file and the memory structure are also
described in this sub-chapter.

3.3.1 Serial Data Path

Appendix A.1 shows the detailed serial data path architecture. The serial
data path was designed according to the current instruction set in order to
provide all the arithmetic, logic, and shift instructions. The serial data path
represents a MAC structure so it's also possible to provide sixteen-by-
sixteen multiplications and then provide one or several arithmetic, logic or
shift operations. According to the instruction word, data can also be
bypassed through the multiplication chain and reach the arithmetic, logic
and shift part of the data path.

The serial data path was designed according to the co-designed instruction
set. The instruction set consists of six types of instructions:
� MOVE instructions
� ALU instructions
� MAC instructions
� DMAC instructions
� SIMD instructions
� P_FLOW instructions

Please refer to chapter 5 for a detailed description of the instruction set.

From the computational point of view, only ALU, MAC and DMAC types of
instructions can be used in the serial data path.

The architecture supports the ability to provide three ALU operations per
one instruction word as one arithmetic, one logic and one shift instruction.
In other words it can provide:
� arithmetic + logic + shift operations
� arithmetic operation only
� logic operation only
� shift operation only

��

� any combination of arithmetic, logic and shift operations one time each,
and exactly in this strong order of execution. This processor can execute
only the arithmetic then the logic and then the shift operation. This
limitation of the executional order is not so ineffective because up to 80%
of all the cases, this exact order is the one that is needed. We applied this
trade-off in our design. This statistic percent number we have got from
the previous research activities.

All possible arithmetic, logic and shift operations are listed and described in
chapter 5.

The MAC and DMAC instructions are also passing through the serial data
path, but in this case the multiplication access chain is always enabled by
the corresponding control signals.

3.3.2 Parallel Data Path

The organization of the parallel data path (see Appendix A.2) is absolutely
the same as for the serial data path except for some architecture features:
� Parallel data paths can operate with 8-bit data, providing eight-by-eight

multiplications, and then accumulate the 20-bit result
� Parallel data paths operates only with the SIMD instructions
� Parallel data paths processes the data only from the memory bank
� The operands in the parallel data paths are taken from the same memory

address line or, if the individual offset is defined, from the different
addresses which have been shifted according to this offset. A more
detailed description of the individual offset addressing is in chapter 4. In
other words, data should be prepared in the memory like two 8-bit pieces
of data at the same address line. One piece in the 8-bit most significant
part and the other one in the 8-bit least significant part of the 16-bit
memory word. The usual 16-bit operand usage is also possible here for
any other non-multiplication operations. See the detailed SIMD
instructions description in chapter 5

� Extra hardware have been added for the possibility to provide PDOT and
PSAD instructions

�	

3.3.3 Register File

The Register File is not a total Data Path object, it should be in between the
Data and the Control Paths. We will describe it here, in the Data Path sub-
chapter. The Register space of this processor can be divided into four
different pieces of hardware:

� The General Purpose Registers space (GPR) that shares the space with the
Special Purpose Registers, see figure 3.3

� The Address Pointer Registers space (APR)
� The Serial Accumulator Registers space (SA)
� The Parallel Accumulators Registers space (PA)

The General Purpose Register space is a set of 32 16-bit registers. The
numerical and functional description, and also the sharing indexes for the
Special Purpose Registers are shown in figure 3.3.

The Address Pointer Registers are special purposes registers, that are used
for storing addresses for memory accesses. There are eight APR`s in the set.
This is enough for flexible and useful accesses to the memories. This is a
separated set of eight 16-bit registers. They don't share the space with a
general purpose register space for organizing the parallel access to the data
from the Register File and from the memories.

The Serial Accumulator Register space is used to keep the intermediate
computation result in the loop without additional memory accesses. Only
the serial data paths use these serial accumulator registers. This is a set of
eight 40-bit registers, consisting of 32 significant bits and 8 guard bits.

From the other side, Parallel Accumulator Registers space is used to keep
the intermediate computation result in the loop without additional memory
accesses. Only the parallel data paths use these parallel accumulator
registers. This is a set of eight 20-bit registers, consisting of 16 significant
bits and 4 guard bits.

Parallel and Serial Accumulator Registers do not share the space with the
GPR`s, both have different hardware for addressing.

�(

15 0
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21/TR0

R22/TR1

R23/TR2

R24/TR3

R25/TAR0

R26/BAR0

R27/TAR1

R28/BAR1

R29/COL_OFFSET

R30/IND_OFFSET

R31/STATUS

Figure 3.3: General and special purposes registers space

��

��

Figure 3.4: Register File Structure

The Special Purpose Register space is a set of registers for auxiliary
purposes, for special computation cases, for processor control status and
for configuration. A more detailed description is in Appendix B.1.

The Register File provides up to four different read accesses and two
different write accesses the same instruction cycle. Both MAC0 and MAC1
can write data to any register. The special control logic is responsible for
choosing the correct chain in the input multiplexers, see figure 3.4.

��

3.4 Control Path

This sub-chapter gives the overall description of the control path for this
processor. In this work we did not concentrate on the detailed design of the
control path but have proposed the core's solutions and root designing
features. The main task of the Control Path is to provide the program flow
control. It supplies the correct instruction to execute, decodes instructions
into control signals and it manages asynchronous job [2]. It also should
supply the correct order of instruction execution by the program counter
(PC).

3.4.1 Overall Description

The simplified version of the Control Path is shown in figure 3.5 and
contains the programmable Finite State Machine (FSM) or the Program Flow
Controller, Program memory, and Instruction decoder.

The Program Flow Controller reads the flag registers and status signals from
the processor. It manages the next PC address for program memory
addressing according to the execution of the current instruction. The next
instruction, pushes the current instruction from the program memory to the
instruction decoder. The program memory is a 32-bit wide, 64kW large
memory.

Figure 3.5: Control Path structure

��

The Instruction decoder processes an instruction word and generates the
control signals to the Data Path, to the data memory, and of course to all
required parts of the processor. The Instruction decoder also provides
address generation for the data according to the instruction word. Later we
will discuss the addressing design strategy and the pipeline instruction
execution for the designed processor.

3.4.2 Design for Addressing

During the processor design we can distinguish between two types of
addressing strategies. The operand addressing and the program addressing.
The program addressing is executed in the Program Flow Controller. The
operand addressing means memory addressing and register addressing.

Program addressing calculates the valid sequence number of every next
instruction. In other words it calculates the valid PC address. The sequence
of events is, first the control logic should fetch an instruction from the
program memory according to the current PC address, then it should
decode the fetched instruction and generate the necessary control signals.
After defining if the next instruction is a branch or not, the calculation logic
should generate the valid PC address for the next fetching. The designed
processor could generate the following addresses:

� PC <= PC + 1 – not a jump instruction
� PC <= PC + 1 – a jump instruction, but jump is not taken
� PC <= jump address – a jump instruction, jump is taken

A more detailed description of the branching techniques in the program
flow control logic is in the William Stallings reference text book [7].

The operand addressing is one of the toughest processor design step,
because it consumes much more coding then the other parts. According to
the architecture plan we need to calculate two different addresses at the
same instruction cycle. For this reason two identical address generation
logics have been designed, see figure 3.6.

The main addressing research result is a special addressing mode, the
totally flexible Memory Index addressing mode. It uses a special offset

��

technique by composing the so-called row and column offsets. The detailed
description of the addressing strategy that has been used in this processor
can be found in chapter 4.

��

��

Figure 3.6: Address Generation Logic structure

3.4.3 Pipeline Structure

The pipelining means dividing the processing job from fetching to writing
back the result into several steps. The pipelining is also responsible for
allocating of every step of job into independent pieces of hardware in
parallel, for assigning each job step into a clock cycle, and for running all
jobs sequentially in parallel [2]. The pipelining increases the overall
processor performance.

There are several strategies in the pipeline design. The main tricky place is
the number of pipelining steps. According to the designed hardware an
instruction should be executed in the following order:
� fetching of an instruction
� decoding of an instruction
� calculating a valid operands addresses
� performing operation (execution)
� writing the final result

We have divided the instruction execution job into six clock cycles, see
figure 3.7. First we need to fetch instruction, decode it and calculate the
valid execution operand address (fetch operand). Next two cycles are for
executions of the operation. Finally, we are storing data in a last step.

Figure 3.7: Pipeline principle

��

where:
FI – fetch instruction
DI – decode instruction
FO – fetch operand
E1 – performing the 1-st operation
E2 – performing the 2-nd operation
ST – store the result

All instructions in the instruction set can be calculated in one executional
cycle, except the MAC instructions, where the multiplication and following
accumulation of the result are taking place. We have to pay attention at this
fact because the media algorithms are fully intensive with MAC operations.
These instructions use two execution cycles, the rest ones use only one
execution cycle, see figure 3.8:

Figure 3.8: Variable 5- and 6-step pipeline stages

The “madd” and the “and” instructions take six and five clock cycles to be
executed respectively. This is a good case for exploring the pipeline
reliability property. As you can see both these instructions want to store the
result at the same execution cycle. The data hazard occurs if they use the
same resources. To avoid this problem and any other timing or data
hazards, a pipeline controller is expected. It should spy the data
dependencies and correct them according to the algorithm, see figure 3.9:

�	

The first instruction takes six clock cycles to be executed. To perform the
execution of N instructions we need [6 + (N -1)] clock cycles, if there are no
branch instructions in the stream. The processor's control logic should
check the branch status every time the branch occurs, if it is a taken branch
or not. If the branch is taken we are loosing four clock cycles according to
our design.

Figure 3.9: Pipeline data hazard

To improve the overall processor performance some branch prediction
strategies might be useful. In this work we have concentrated only on the
hardware design features. The more detailed information about the
pipelining techniques and the branch prediction strategies is in the William
Stallings text book [7].

�(

3.5 Data Memory

According to the design specification all memories should be single port
SRAM only. This gives the advantage of porting design to different silicon
processes.

The size of the data memory addressing space should be large enough for
covering all functional purposes. Four 16-bit different data accesses are
supported in parallel. We have divided the memory bank into four memories
(M0, M1, M2, M3), see figure 3.10:

0x0000 0x0000 0x0000 0x0000

Memory Bank 0

... (64kW-2) ...

M0

Memory Bank 1

... (64kW-2) ...

M1

Memory Bank 2

... (64kW-2) ...

M2

Memory Bank 3

... (64kW-2) ...

M3

0xFFFF 0xFFFF 0xFFFF 0xFFFF

Figure 3.10: Data memory structure

Together the memories have 256kW of memory addressing space, 64kW
each. It's possible to provide the communication between memories via the
special “between memory-memory” instruction (BMM). For a more detailed
description of this instruction, please, refer to chapter 5.

��

3.6 Flags

This DSP processor uses a set of four flags that are updated after most of
the operations. The flags describe the internal computation status of the
processor. They are checked before using the conditional execution
instructions.

The flags are N, Z, C and O. The N flag is set when the result is negative, the
Z flag is set when the result is zero, the C flag is set when there is a carry
out and the O flag is set when there is a overflow. The flags are reset as soon
as the conditions are not fulfilled any more.

3.6.1 Model

Each data path has it's own set of flags. This is only a preparation for the
future and in this design they all work as one set of flags. As an example, all
O flags must be set in order to have overflow as the computational status.
The flags in the parallel data path0 are called p_N0, p_Z0, p_C0 and p_O0. In
parallel data path1 they are called p_N1, p_Z1, p_C1 and p_O1 and so on. In
the serial data paths the flags are called s_N0, s_Z0, s_C0, s_O0 and s_N1,
s_Z1, s_C1, s_O1. The index always specifies the data path number and the p
or s specifies if it's a parallel or a serial data path.

There are two 16-bit registers for storing the flags, the s_flags and the
p_flags. The s_flags stores the flags of the two serial data paths and the
p_flags stores the flags of the four parallel data paths. The two registers
showing how the flags are stored can be seen below.

1

p_N0

1

 p_N
1

1

 p_N
2

1

 p_N
3

1

 p_Z0

1

 p_Z1

1

 p_Z2

1

 p_Z3

1

 p_C0

1

 p_C1

1

 p_C2

1

 p_C3

1

p_O0

1

p_O1

1

p_O2

1

 p_O3

Figure 3.11: The p_flags register

8

Reserved

1
s_N0

1
s_N1

1
s_N2

1
s_N3

1
s_O0

1
s_O1

1
s_O2

1
s_O3

Figure 3.12: The s_flags register

��

3.6.2 Hardware realization

 p_N0 p_Z0
 p_N1 p_Z1
 p_N2 N p_Z2 Z
 p_N3 p_Z3
 s_N0 s_Z0
 s_N1 s_Z1

 p_C0 p_O0
 p_C1 p_O1
 p_C2 C p_O2 O
 p_C3 p_O3
 s_C0 s_O0
 s_C1 s_O1

3.6.3 Conditions

All conditions, for condition based instructions, are flag depending.
Different flag combinations gives different conditions. The conditions are
based on the merged N, Z, C and O flags. All flag combinations and their
respective conditions are in table 3.1.

Table 3.1: Condition table

Condition Description Flags
GT Greater than N=0 and Z=0

GTE Greater than or equal N=0

LT Less than N=1

LTE Less than or equal N=1 or Z=1

E Equal Z=1

NE Not equal Z=0

C Carry out C=1

NC Not carry out C=0

O Overflow O=1

NO Not overflow O=0

��

! !

! !

��

4
Addressing design

4.1 Preview

The task of the address generation unit, AGU, is to generate the correct 16-
bit addresses each clock cycle. The AGU is designed so it can access up to
four memories at the same clock cycle. The memories can be accessed with
an individual offset between each of them. The data can be addressed with
column and row offsets for a very flexible addressing. The AGU also
supports Modulo addressing and BRA, bit reversed addressing, as well as
most other basic addressing. Exactly what is supported and not is described
in this chapter.

4.2 Hardware Model

Two different addresses can be calculated at the same time from two
identical address calculation logics inside the AGU, see figure 3.6. There is a
top address register, the TAR, and a bottom address register, the BAR, that
supports modulo addressing for each address calculation logic. There is also
support for bit reversed addressing, BRA. The BRA supports masking of
MSB`s. How many MSB`s that should be masked is checked in the MASK
register. There are two special offset registers, the IND_OFFSET that
specifies the offset between memories and the COL_OFFSET that specifies
how large the column offset should be. The Row offset is taken from the
instruction word`s. There are four Table registers that specifies the length
of the row and column offset when using Memory index addressing.

��

4.3 Addressing Model

There is a set of eight 16-bit address pointer registers, APR0–APR7. The
memory space in the memory bank is divided into four memories with
64KWords each. We need to address only one 16-bit address pointer to
access a word in each memory inside the memory bank. The address can be
added with an optional offset. The offset is divided into a large offset, the
column offset, and a small offset, the row offset. There is also an offset
between different memories in the memory bank, the individual offset. The
individual offset affects all addressing modes, even those without any
offsets.

The way to generate a new address is shown below.

Base address, APR0–APR7

 +
Column offset, COL_OFFSET

 +
Row offset

 +
Individual offset, IND_OFFSET

 =
New address

The individual offset works in the way that it multiplies the offset length
with the memory number. As an example, see table 4.1 where the individual
offset is two. The length of the individual offset should be configured before
execution in the special offset register, IND_OFFSET.

The column offset is an offset with a configurable field length that, together
with the row offset, must not be greater than 216. The length of the column
offset should be configured before execution in the special column register,
the COL_OFFSET.

The row offset is a programmable offset that is specified in the instruction
word. The length of the row offset differs according to the instruction word
that is used. When using any table addressing, as memory index addressing
for an example, the width can be up to 16-bits as long as the column offset

��

is compensated for this.
This concept of adding the different offsets to the base address will give
each data path it's own address as below:

address for datapath0 <= apr[15:0] + column offset + row offset + ind.off.*0
address for datapath1 <= apr[15:0] + column offset + row offset + ind.off.*1
address for datapath2 <= apr[15:0] + column offset + row offset + ind.off.*2
address for datapath3 <= apr[15:0] + column offset + row offset + ind.off.*3

Of course, each type of offset can be zero and is in that case not adding to
the new address.

Table 4.1: Addressing with an individual offset of two

Memory 0 Memory 1 Memory 2 Memory 3

READ data data data

data data data data

data READ data data

data data data data

data data READ data

data data data data

data data data READ

************ ************ ************ ************

READ data data data

data data data data

data READ data data

data data data data

data data READ data

data data data data

data data data READ

************ ************ ************ ************

��

4.4 Addressing Modes

According to the strategy of addressing, it's possible to organize a totally
flexible offset with a length of up to 16-bits. There are two addressing mode
types, the standard and the extended. The standard addressing modes are
chosen in the instruction word and the extended are pre-configured in the
status register, STATUS. The list of addressing modes are listed in table 4.2.

Table 4.2: Addressing modes

Mode Description AM type
Register direct addressing - -

Register indirect addressing A <= aprX[15:0]

Post A <= aprX[15:0]

Standard

Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

Standard

Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

Standard

Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Aux. Reg[15:0]

Standard

Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

Standard

Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

Standard

Modulo addressing See description later in this chapter Extended

Bit reversed addressing A <= aprX[0:15] (when MASK is zero) Extended

Memory index addressing See description later in this chapter Extended

Only the simple Register addressing mode keeps the address pointer
unchanged after execution. The rest of the modes adds different post
changes to the APR`s and this is for flexibility when doing hardware loops.
The address for the first step in the loop must be prepared in one of the
address pointer registers (APR0–APR7).

Register direct addressing is a mode that is chosen by the instruction. It's
used when the data is already inside a register, thus in this case it does not

��

need to be addressed in the memory.

Register indirect addressing is a mode where we address data that is inside
the memory. The data is found in the memory at the address that is given by
the chosen APR.

Register indirect addressing with post changes such as increment,
decrement, plus offset, minus offset and plus index register is used when
the address in the APR`s must be updated after execution. This is necessary
for being able to generate the correct addresses when doing hardware loops.

Modulo addressing, or circular addressing that it's also called, is an
extended addressing mode that can be used in conjunction with any other
standard addressing modes. It's very useful when working with circular data
buffers. When using Modulo addressing, there must be a TAR, Top Address
Register, and a BAR, Bottom Address Register, already configured that
specifies a top and bottom address. When using Modulo addressing in
conjunction with another standard addressing mode with post changes and
the address pointer reaches the bottom address, the address flips over to
the top address instead of the next address. In this way the generated
addresses circulates between the top address and the bottom address and
it's because of this it's also called circular addressing. When Modulo
addressing is used the circular addressing is applied to Memory1 and
memory3.

Bit-Reversed Addressing, BRA, is also an extended address mode that can
be used in conjunction with any other standard addressing modes. When
the address is generated, the BRA inverts the bits according to a pre-
configured mask register, MASK. The mask register specifies how many
MSB`s that should not be inverted, thus masked. An example is given in
table 4.3.

�	

Table 4.3: Example of BRA with masking

APR BRA MASK Note
0000111100001111 1111000011110000 0 0 masked MSB`s

0000111100001111 0111000011110000 1 1 masked MSB

0000111100001111 0011000011110000 2 2 masked MSB`s

0000111100001111 0001000011110000 3 3 masked MSB`s

0000111100001111 0000000011110000 4 4 masked MSB`s

0000111100001111 0000100011110000 5 5 masked MSB`s

...............................

0000111100001111 0000111100001111 16 16 masked MSB`s

The most interesting mode is the memory index addressing, that is a table
address mode. It gives a very flexible opportunity to address data for a wide
range of applications. It uses a table that must be pre-configured with a row
and a column offset. The length of the column and the row offset can be
anything between 0 and 216. However, they must not exceed 216 when they
are added together. In this way we can organize 2-dimensional addressing.
It supports accessing data in any pre-configured Zig-Zag order according to
the offsets. The Memory index addressing uses four special table registers
(Tr0-Tr3) that can be configured in the TABLE field in the status register,
STATUS. How the special table registers are chosen can be seen in table 4.4.

Table 4.4: Selection of the table registers

Code Table register
00 Tr0

01 Tr1

10 Tr2

11 Tr3

In the 4-bit TABLE field in the STATUS register we can configure any order
of table accesses. The first 2-bits, Table 1, specifies the column offset and
the last 2-bits, Table 2, specifies the row offset. The Table field can be seen
in table 4.5. “XX” specifies one of the four table registers (Tr0-Tr3).

�(

Table 4.5: Description of the TABLE field

Table1, column Table2, row
b'XX' b'XX'

b'XX' b'XX'

b'XX' b'XX'

b'XX' b'XX'

��

��

5
Instruction set design

5.1 Preview

The instruction set is the interface between hardware and software. The
performance of the DSP is heavily dependent on the instruction set. An
instruction set must be simple and as orthogonal as possible. If it can be
highly orthogonal, then the instruction set is efficient.

The task was to design a set of very few instruction words with instead as
many specifiers as possible.

The instruction set for this DSP uses eight 32-bit instruction words.
However, we have only used six of them in our design and therefor two of
them are reserved for future use. The six instruction words that are used are
MOVE, ALU, MAC, DMAC, SIMD and P_FLOW.

Because the 32-bit limitation in the instruction words, there is not space for
all specifiers that are needed. There have to be some sort of a trade off. In
this work we concentrated on making the instruction words as flexible as
possible regarding addressing. The trade off for having such a high
addressing flexibility is to use a status register for additional specifiers. In
our design we have used the 16-bit GPR31 as the status register, STATUS.
The status register is always checked before execution for pre-configuring
the DSP and is updated after execution. All instruction words are designed
to use the status register.

��

5.2 Hardware Description

The hardware architectures for the data paths of this DSP processor are
shown in chapter 3. The processor core have six executional units, one
extended mac, the MAC0 containing a serial data path and four parallel data
paths, and MAC1 containing another serial data path.

The data can be accessed in the general purpose registers, GPR0-GPR31, and
in the memories, M0-M3. When accessing memories, this is done through
eight 16-bit address pointer registers, APR0-APR7, containing memory
addresses. The APR`s are the same for all data paths. The description of the
address generation unit, AGU, that is responsible for that the correct
addresses is being generated, is described in chapter 4.

The data can also be stored and accessed in accumulator registers, ACR`s.
Each data path have its own set of ACR`s for saving intermediate results.
The serial data paths have a set of eight 40-bit accumulator registers each.
The parallel data paths don't do the same kind of processing and have no
use of 40-bit precision, and therefor they instead have a set of eight 20-bit
accumulator registers each. This is enough because the most computing
intense that can occur in a parallel data path is the multiplication by two 8-
bit data.

5.2.1 The STATUS register

When designing our model we decided that the DSP processor's instruction
set must be as flexible as possible. However, if everything should be 100
percent flexible, then everything must be programmable. If we make
everything programmable, then the instruction words will be very long. The
instruction words in our design are limited to 32-bits so a trade off is, as
always, needed. We had to carefully analyze which functions that should be
programmable and which that instead should be configurable. The functions
that was decided to be configurable was put into a status register, STATUS.
The status register is one of the general purpose registers (GPRs) in the
register file. The GPR31 was chosen as the status register, STATUS.

��

5.2.2 Partitioning between configurable and programmable

The type of the data, if it has integer or fractional representation or if it's
signed or unsigned, should be known before accessing it in order to
generate the correct control signals. Because of this, the specifiers for
selecting it are decided to be configurable and are moved to the status
register.

When computing with a DSP processor, hardware loops are performed
almost all of the time and the way to handle the data must be known before
entering the loop. If saturation should be turned on or off, if the data should
be rounded and truncated to extract native width and the use of carry or
saturation arithmetic must be known and is therefor moved to the status
register.

All configurable specifiers are in the status register. The status register can
be seen in figure 5.1. All programmable choices are kept in respective
instruction word)

�
$����
*��

�
%� ��

�
�+$

,��-���.

�
/0������

�1

�

���������-

+����

�
��������-
2��
������

��

�����-
3�������

�

��

,��-���.

�
$���!
%���
���

Figure 5.1: The status register, STATUS

5.2.3 Additional specifiers in the status register

The Extended AM field selects additional configurable addressing modes
(AM`s) that affects all ordinary addressing modes that are chosen in the
instruction word. The available extended addressing modes are described in
chapter 4.

All data paths are MAC`s that supports ALU operations. Because of this, the
ordinary way to always use the accumulator registers to accumulate
intermediate results, are not so efficient. All instructions don't use the
ACR`s and in order to avoid the need for clearing the accumulator registers
each time before such instructions, we have designed for the possibility to
toggle the accumulator registers on and off. This is specified in the ACR
field in the status register and is performed by a simple bypass through a

��

multiplexer.

The Table field specifies the column and row offset registers. The first 2-
bits specifies one of the four table registers (Tr0-Tr3) that should be used as
the column offset and the last 2-bits specifies which of the four table
registers (Tr0-Tr3) that should be used as the row offset. For a detailed
description of Table addressing, see Memory index addressing in chapter 4.

The 2-bit reserved field is for future use.

��

5.3 MOVE

During DSP, a lot of time is used for ordering the data such as moving
between registers, memories etc. This is very time consuming and a lot of
effort have been made in making the move operations as efficient as
possible. If the DSP processor is very fast at calculations but don't have an
effective move arithmetic, then there is no point with the fast calculations.
In this case we will loose cycles when moving and then gain them back when
calculating and the result will be all but impressive.

The complexity of designing the move instruction word increases with the
number of executional units. In our case with six executional units, trade
offs are necessary. The chosen design will be explained in detail in this
chapter.

5.3.1 MOVE model

Our move instructions supports moving from the two serial data paths or
the four parallel data paths to the four memories. The opposite order, from
the memories to the serial and the parallel data paths, is of course also
supported. There is also a possibility to load a 16-bit immediate value
directly to the general purpose registers, the address pointer registers or the
memories. When moving between parallel data paths and memories all
parallel data paths are affected. This means that there is always four values
that are moved between the memories and the parallel data paths by only
one move instruction. The same is true for the dual MAC structure, with two
serial data paths. The only exception is that there are two results generated
instead of four.

5.3.2 MOVE instruction word

There is always a trade off between programmability and configurability in a
relatively short instruction word. All needed specifiers can't be fitted in a
32-bit instruction word and therefor it depends on the status register as
well. When moving to memory or general purpose registers it's vital that the
data is 16-bit because of the hardware limitation of 16 bits. However, most
of the time the data is larger than 16 bits because of the much higher

��

internal precision. To solve this problem their is support for converting to
native length. This is decided by the status register, STATUS, that is always
checked before execution. The explanation of the status register is in sub-
chapter 5.2.

After our research, the instruction word that is seen in figure 5.2 was
designed.

�

%���

�

45

�

�1

�

-6

�
3������

�
����0�$���

�

$��

��
4�����

�
�

�

7�����

7�+$

�

6$��

��
�����

�
�6

�
67�����

Figure 5.2: MOVE instruction word

The Type field identifies that it's a move instruction. The OP field decides
what instruction that should be used. The supported instructions are in
table 5.1.

Table 5.1: MOVE instruction list
Op Instruction Op Instruction

000 NOP 100 SWP (SWaP data between registers)

001 BMM (Between Memory and Memory) 101 CLA (CLear Accumulator)

010 BRM (Between Register and Memory)
110

LD (LoaD register or memory with
immediate data)

011 BRR (Between Register and Register) 111 Reserved

The AM field is described in the addressing part for the move later in
chapter 5.3.3.

The S/D field has a multi purpose depending on which instruction that is
being used.

If the instruction is BRM, Between Register and Memory, then it specifies if
the source is a GPR, a SA, a PA or a memory. A SA is a serial ACR in both

��

MAC0 and MAC1 and the PA is one ACR in each parallel data path. For
example, if the source is PA0 than, this means that the data in each PA0, in
the parallel data paths, are moved to all memories. In this case, PA0 in data
path0 is moved to memory0 and ACR0 in data path1 is moved to memory1
and so on. Both the SA`s and the PA`s are specified in the source
accumulator, S_ACR, field.

If the instruction is CLA the S/D field specifies which accumulator that
should be cleared. It can be an ACR in the serial data path in MAC0, an ACR
in the serial data path in MAC1, both ACR`s in both serial data paths or all
four ACR`s in the parallel data paths.

If the instruction instead is LD, then the S/D field specifies if the destination
is a GPR, a APR or a memory.

The Index Reg, index register, field is selected if the addressing mode is
index addressing. The 5-bit Index Reg field specifies one of the 32 GPR`s
that should be used as the index register.

The offset field is selected by the address modes that uses offsets. It's an
large 11-bit standard offset that is fully programmable in the instruction
word and it has nothing to do with column and row offsets.

The Imm16 field is a 16-bit field that is used for immediate address and
immediate data. The LD instruction selects this field. The S/D specifier then
decides if the 16-bit data is an address or data. If S/D specifies the memory
or a GPR, then it's immediate data and if the S/D instead specifies a APR,
then it's an immediate address.

The mS and the mD field, each specifies one of the four memories as the
source and the destination. The S_point and D_point, each specifies one of
the eight APR`s as the source and destination addresses. The Sreg and Dreg,
each specifies one of the 32 GPR`s as the source and destination registers.

�	

5.3.3 MOVE addressing model

The complete addressing model for this processor is described in chapter 4.

The MOVE model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.3.

First, the MOVE instruction word is being read. If the source is in the
memory the address to it is generated and the APR is updated, for the next
instruction cycle, based on the incrementing technique that is currently
being used. The data is determined and accessed. Now the MOVE instruction
is being executed and finally it starts all over again by reading the next
instruction.

Figure 5.3: The MOVE addressing flow graph

The addressing modes that are supported by the MOVE instructions are
listed in table 5.2. These addressing modes are specified in the instruction
word.

�(

Execute the MOVE instruction Access the data in the register
file or in the memory bank

If memory bank access is
needed. Generate address. Prepare for

an eventual loop. Incrementing
techniques etc.

Read instruction word

Table 5.2: MOVE addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0]

001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

010 Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + AuxReg[15:0]

100 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + offset

101 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] – offset

110 Reserved -

111 Reserved -

The MOVE also supports addressing with the extended addressing modes
that can be chosen inside the status register, STATUS. The extended
addressing modes are used in conjunction with the standard addressing
modes. These modes can be helpful if a lot of data has to be rearranged in
the memories. In this case, there might be a need to loop MOVE instructions
and the extended addressing modes are very useful for this. The supported
extended addressing modes can be seen in table 5.3. The extended
addressing modes are applicable to all MOVE addressing modes.

Table 5.3: Extended addressing modes

Extended AM Addressing mode Description
00 Not used No extended addressing mode

01 Modulo addressing See chapter 4

10 Bit reversed addressing See chapter 4

11 Memory index addressing See chapter 4

��

5.4 ALU

The Arithmetic and Logic Unit, ALU, supports the 16-bit logic, arithmetic
and shift operations. In order to speed up these operations, this DSP
processor can execute one logic, one arithmetic and one shift operation in
the same cycle.

The ALU architecture is divided into three blocks that the operands
propagates through. The first block is the logic block, the second is the
arithmetic block and the third is the shift block. The only limitation is that
the order of the blocks are fixed. The order must be, first the logic, second
the ALU and third the shift operation. However, any block can be disabled if
not needed. The disabling is done by providing a NOP instruction for that
block. Research has proved that this fixed order is in fact the order that is
needed in 80 percent of the cases. In those 80 percent, this approach
provides a three times theoretical speed up.

In order to improve performance even further, the instruction word uses
one more argument then usual in order to avoid implied addressing in most
cases. By avoiding implied addressing the performance is improved for
some applications. The improvement is caused by the fact that the result is
stored at the correct location directly without the need for a MOVE
instruction.

5.4.1 ALU model

All ALU operations are provided by the serial data paths in either MAC0 or
MAC1. There is no special ALU unit, instead, each MAC have hardware
support for ALU instructions.

The serial data paths can read data from any of the memories or the general
purpose registers. The computed results can also be written to any memory
or general purpose register. This strategy was chosen because there is one
instruction cycle saved each time we can avoid a MOVE instruction. In this
way, it's not necessary to execute move instructions to prepare data in the
general purpose registers before execution.

The inputs of the serial data paths are 16-bit but internally they are sign or

��

zero extended depending on the operation. Internally all computations are
40-bit in order to provide a high precision of the result. The 40-bit results
can be rounded, saturated and truncated in order to get the 16-bit native
length at the output.

5.4.2 ALU instruction word

The ALU instruction word is designed so that implied addressing is avoided
in most cases. Implied addressing means that the destination is both the
second source and the destination. By avoiding this and instead keep two
sources and a separate destination we can further improve the performance
in most cases. The reason for the improvement in performance is that move
instructions can be skipped in the cases when the second source is not the
same as the destination.

The configurable specifiers are in the status register, STATUS.

After our research, we designed the instruction word that is in figure 5.4.
The dark gray fields are for use with the Register direct modes and the light
gray are for use with the Register indirect modes.

3

Type

3

Logic

5

Arithmetic

3

Shift

3

AM

5
SReg1

2
mS1

3
S_point1

5
SReg2

2
mS2

3
S_point2

5
Row offset

Imm10

5
S/DReg

2
mD/S

3

S/D_point

S/D_ACR

Figure 5.4: ALU instruction word

The Type field identifies that this instruction word is the ALU. The AM field
specifies the addressing modes. The addressing modes are described later in
sub-chapter 5.4.3.

The Logic field specifies the logic instruction. The supported logic
instructions are listed in table 5.4.

��

Table 5.4: LOGIC instruction list

Code Instruction Code Instruction
000 NOP 100 NOT

001 AND 101 NOR

010 OR 110 NAND

011 XOR 111 Reserved

The Arithmetic field specifies the arithmetic instruction. The supported
arithmetic instructions are listed in table 5.5.

Table 5.5: ARITHMETIC instruction list

Code Instruction Code Instruction
00000 NOP 10000 Reserved

00001 ADD 10001 Reserved

00010 SUB 10010 Reserved

00011 INC 10011 Reserved

00100 DEC 10100 Reserved

00101 MIN 10101 Reserved

00110 MAX 10110 Reserved

00111 ABS 10111 Reserved

01000 SUBABS 11000 Reserved

01001 ABSSUB 11001 Reserved

01010 ADDABS 11010 Reserved

01011 ABSADD 11011 Reserved

01100 AVG 11100 Reserved

01101 CMPE 11101 Reserved

01110 NEG 11110 Reserved

01111 Reserved 11111 Reserved

The Shift field specifies the shift instruction. The supported shift
instructions are listed in table 5.6.

��

Table 5.6: SHIFT instruction list

Code Instruction Code Instruction
000 NOP 100 Reserved

001 SHRA 101 Reserved

010 SHRL 110 Reserved

011 SHL 111 Reserved

The Sreg1 and Sreg2 specify source1 and source2. Each one specifies one of
the 32 GPR`s in the register file. The S/Dreg specifies one of the 32 GPR`s
as the destination register. The Sreg1, Sreg2 and Dreg fields are selected
when the register direct address mode is chosen.

The mS1 and mS2 specify source memory1 and source memory2. The mD
specifies the destination memory.

The S_point1 and S_point2 specify address1 and address2 to the memories.
The S/D_point specifies the destination address. The addresses are used
together with the mS1, mS2 and mD/S to point to address spaces in the
selected memories.

When working with immediate data, implied addressing is being used and
this results in that the destinations (mD, D_point and DReg) also specifies
the source.

The S/D_ACR field is selected if the ACR is turned on in the status register,
STATUS. It selects one of the eight 40-bit ACR`s in the serial data path of
MAC0. It specifies both the source and the destination ACR. This field is
only used when doing hardware loops.

The 5-bit Row offset is selected by the address modes that supports offset
addressing. When this is active, implied addressing is being used because
the second source field is instead used for the offset. This row offset is
always combined with the configurable column offset register.

The Imm10 is selected by the address modes that supports working with
immediate data. This can be useful for some applications, especially when
shifting. As an example, it supports a quick and easy way to perform

��

scaling.

5.4.3 ALU addressing model

The complete addressing for this processor is described in the chapter 4. In
the ALU, the following is described.

The ALU model of addressing can be seen as an addressing flow graph. This
addressing flow graph is illustrated in figure 5.5.

First, the ALU instruction word is being read. If the sources are in memories,
the address for the access is generated and the APR is updated, for the next
instruction cycle, based on the incrementing technique that is currently
being used. Next the sources are accessed. Next the instruction is being
executed and after this the result is written back to the register file or the
memory. Finally it starts all over again by reading the next instruction.

Figure 5.5: The ALU addressing flow graph

The available addressing modes for the ALU in this processor are listed in
table 5.7. These modes are specified in the instruction word.

��

Store the result in the
register file or in the memory bank.

Next instruction

Execute the ALU instruction

Read instruction word

Access the data in the register
file or in the memory bank

If memory bank access is
needed. Generate address. Prepare for

an eventual loop. Incrementing
techniques etc.

Table 5.7: ALU addressing modes

Code Addressing mode Description
000 Register direct No address

001 Register direct

with immediate data

No address

010 Register indirect A <= aprX[15:0]

Post A <= aprX[15:0]

011 Register indirect

with immediate data

A <= aprX[15:0]

Post A <= aprX[15:0]

100 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

101 Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

110 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] + (col_offset + row_offset)

111 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] – (col_offset + row_offset)

The ALU also supports addressing with the extended addressing modes that
can be chosen inside the status register, STATUS. The extended addressing
modes is used in conjunction with the standard addressing modes. The
supported extended addressing modes can be seen in table 5.3.

��

5.5 MAC

During DSP, most of the calculations are multiply and accumulate while
doing a hardware loop. These calculations are executed inside a MAC,
Multiply and ACcumulate, unit that generates a sum of products, meaning
that the result of the multiplication is always added or subtracted to an
ACR. These operations are very computing intense and it's often the MAC
unit that is the bottleneck when measuring the performance.

In order to improve performance, the instruction word uses one more
argument then is usual in order to avoid implied addressing in most cases.
By avoiding implied addressing the performance is improved for some
applications. The improvement is caused by the fact that the result is stored
at the correct location directly without the use of a MOVE instruction.

5.5.1 MAC model

In the MAC mode the serial data path in MAC0 is used. The serial data path
uses two 16-bit operands. The data can be accessed in two ways. In the first
way, the data are accessed from two memories, one from each memory. The
description of the address generation unit, AGU, that is responsible for that
the correct addresses is being generated, is described in chapter 4. In the
second way, the data are taken from two registers in the register file.

After the processing, the result can be stored in any of the memories, in any
GPR in the register file or in one of the eight 40-bit ACR`s in the serial data
path. The source ACR is always the same as the destination ACR.

In order to do hardware loops with the MAC, the 16-bit data has to be taken
from the memories. The design is not limited to this but it's rather pointless
to use the register file for looping because of the limited space in it.

The inputs of the serial data path are 16-bit but internally all computations
are 40-bit in order to provide a high precision of the result. The 40-bit
result can be rounded, saturated and truncated in order to get the 16-bit
native length at the output.

��

5.5.2 MAC instruction word

When designing our model we decided that the MAC instruction word
should be as flexible as possible regarding accessing of the data. In this
design it was solved by adding an extra argument so that two sources and
one destination could be addressed without the need for implied
addressing.

The MAC mode have all configurable specifiers in the status register,
STATUS and the programmable specifiers are in the MAC instruction word.
The MAC instruction word can be seen in figure 5.6. The instruction word
separates into two levels illustrated as, one light gray and one dark gray. The
dark gray level is only for the Register direct mode and the light gray level is
only for the Register
indirect mode.

�

%���

�

4�

�

�1

�

6

�
����0�$��

�

$���

�

$���

�
6$��

�
$�8�������

�
�
�

�

7������

�
�
�

�

7������

�
�6

�
67�����

-67
�

Figure 5.6: MAC instruction word

The Type field identifies that this instruction word is the MAC instruction
word. The Op field selects which instruction that should be used. The
supported instructions are listed in table 5.8. The AM field selects the
addressing mode. The supported MAC addressing modes are described in
the addressing model later in sub-chapter 5.5.3. All available addressing
modes can be found in chapter 4.

The D field specifies if the destination is one of the 32 GPR`s in the register
file, one of the four memories in the memory bank or one of the eight
ACR`s in the serial data path of MAC0.

The Row offset in the instruction word is combined with the configurable
column offset to give a very flexible way of accessing the data. Because the
Row offset is specified in the instruction word there is no need to
reconfigure the processor each time a small change is needed.

�	

Table 5.8: MAC instruction list

Op Instruction Op Instruction
0000 MUL 1000 Reserved

0001 MADD 1001 Reserved

0010 MSUB 1010 Reserved

0011 Reserved 1011 Reserved

0100 Reserved 1100 Reserved

0101 Reserved 1101 Reserved

0110 Reserved 1110 Reserved

0111 Reserved 1111 Reserved

The Index Reg selects one of the 32 GPR`s in the register file.

The addressing mode decides if the Row offset or the index register, Index
Reg, should be used. Index addressing chooses the Index Reg and the Row
offset is chosen when working with offsets.

The S/D_Sa field selects one of the eight serial ACR`s (SA`s) that is both the
source and the destination ACR.

The Sreg1 and Sreg2 specify source1 and source2. Each one specifies one of
the 32 GPR`s in the Register File. The Dreg specifies one of the 32 GPR`s as
the destination register. The Sreg1, Sreg2 and Dreg fields are selected when
the register direct address mode is chosen.

The mS1 and mS2 specify source memory1 and source memory2. The mD
specifies the destination memory.

The S_point1 and S_point2 specify address1 and address2 to the memories.
The D_point specifies the destination address. The addresses are used
together with the mS1, mS2 and mD to point to address spaces in the
selected memories.

�(

5.5.3 MAC addressing model

The complete addressing for this processor is described in chapter 4. In the
MAC mode, the following is described.

The MAC model of addressing can be seen as an addressing flow graph. This
addressing flow graph is illustrated in figure 5.7.

First, the MAC instruction word is being read. If the sources with the data
are in the memories, the address is read from the APR and after this the
address is updated, for the next instruction cycle, based on the
incrementing technique that is currently being used. Next the two sources
containing the data are determined and accessed. Next the instruction is
being executed and after this, the result is stored. Finally it starts all over
again by reading the next instruction.

Figure 5.7: The MAC addressing flow graph

The available addressing modes for the MAC mode of this processor are
listed in table 5.9.

��

Store the result in
 memory, ACR or in register file.

Next instruction

Get 2 sources
either in 2 memories or in the

register file

Read instruction word

Execute the MAC instruction

If memory bank access is
needed. Generate address. Prepare for

an eventual loop. Incrementing
techniques etc.

Table 5.9: MAC addressing modes

Code Addressing mode Description
000 Register direct No address

001 Register indirect A <= aprX[15:0]

010 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

011 Register indirect,

post decremented by 1 (--)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

100 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Aux.Reg

101 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

110 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset – row_offset)

111 Reserved -

The MAC also supports addressing with the extended addressing modes that
can be chosen inside the status register, STATUS. The extended addressing
modes is used in conjunction with the standard addressing modes. The
supported extended addressing modes can be seen in table 5.3.

��

5.6 DMAC

As mentioned in the MAC sub-chapter, it's often the MAC that is the
bottleneck for performance. In order to improve the performance, the
throughput must be increased. To increase the throughput the DSP
processor must run at a higher frequency. While it might seem simple to run
the processor at a higher frequency, this is not the solution because there
are hardware limitations on how fast you can run it.

A completely different approach is to add another MAC unit and divide the
workload between the MAC units. In this case the calculations can be
completed in half the time compared to when using only one MAC unit. This
is the chosen approach in this project.

A dual mac, DMAC, architecture can theoretically improve the performance
by a factor two. However, this is not the case with real world applications
because of problems with the separation of the workload. While it can sound
simple to separate the workload, you can be assured it's not. It's only when
the workload can be totally separated into two identical parts that we can
achieve the two times speed up. In this way the MAC units works completely
individual and in parallel.

Even if the performance can't be improved by a factor two, it's still
preferable to have another MAC unit because of the increased performance.
The improvement is still better than with one MAC unit.

The DMAC mode can be run simultaneously with the SIMD mode if it uses
only the Register File. This offers a very high parallelism and the greatest
performance that this DSP processor can offer.

5.6.1 DMAC model

In the DMAC mode the two serial data paths of MAC0 and MAC1 are used.
Each serial data path uses two operands of 16 bits each. In this design we
can get four operands in two ways. The first is to access all four memories
at the same time and get one 16-bit operand from each memory. The
second is to access four 16-bit GPR`s in the register file. Our register file
supports reading from four different registers at the same time.

��

In order to do hardware loops with the MAC`s, the 16-bit data has to be
taken from the memories. The design is not limited to this but it's rather
pointless to use the register file for looping because of the limited space in
it.�

When using register indirect and thus accessing memories, one base address
is taken from one of the eight 16-bit APR`s. All operands uses the same
base address but different memories. Each serial data path can read two
operands from any of the memories, one operand from each memory. After
the processing of the operands, the two results can be stored in two
memories or in the 40-bit ACR`s in each serial data path. The description of
the address generation unit, AGU, that is responsible for that the correct
addresses is being generated, is described in chapter 4.

When using register direct, four sources are taken from four GPR`s in the
register file. After the processing the results can be stored in two GPR`s in
the register file or in the ACR`s.

If the results are to be stored in two memories, this is done by implied
addressing meaning that these two are the same as the second sources.
When the two results should be stored in the register file, this is also done
with the use of implied addressing and the two result registers are the same
as the second sources. If the results instead should be stored in the ACR`s,
then one of the eight ACR`s is selected and the results are written to this
ACR in both serial data paths. The source ACR is always the same as the
destination ACR.

The inputs of the serial data paths are 16-bit but internally all computations
are 40-bit in order to provide a high precision of the result. The 40-bit
results can be rounded, saturated and truncated in order to get the 16-bit
native length at the output.

5.6.2 DMAC instruction word

When designing our model we decided that the DMAC mode should be as
powerful as possible but still flexible enough to be able to run in parallel
with the SIMD mode that is described in sub-chapter 5.7. This forced us to
design the instruction word so that the DMAC supports working with both

��

registers and memories.

When doing hardware loops we must use the memories directly in order to
get enough data. If the SIMD mode is used and being looped, then all
memories are already busy hence the data must be taken from the register
file instead. The instruction word supports this and gives the opportunity to
use the DMAC mode simultaneously with the SIMD mode. This gives a very
high parallelism and this results in the best performance that can be
achieved by this DSP processor.

The DMAC mode have all configurable specifiers in the status register,
STATUS and the programmable specifiers are in the DMAC instruction word.
The DMAC instruction word can be seen in figure 5.8. The instruction word
separates into two levels illustrated as, one light gray and one dark gray. The
dark gray level is only for the Register direct mode and the light gray level is
only for the Register indirect mode.

�

%���

�

4�

�

5��
�1

�������

5���
�1

�

4��
(

�

4�"
(�

�

4��
��

�

4�"
��

�

6

�

$�8�������

����0�$��

�

���
�
 ���

��������

�

6���)
 ���

�������

-67
�

�

$��(

�

-6$��(

�

$���

�

-6$���

�

-67
�

Figure 5.8: DMAC instruction word

The Type field identifies that this is the DMAC type of instructions. The Op
field selects which instruction that should be used. The supported
instructions are listed in table 5.10. The “D” in front of all instructions
specifies that the instruction is of dual type and is performed in the DMAC.
This separates them from the ordinary instructions. As an example, ADD is
for the single MAC, DADD is for the DMAC.

��

Table 5.10: DMAC instruction list

Op code Instruction Op
code

Instruction

00000 DADD 10000 DSHRA

00001 DSUB 10001 BUTFLY (MAC0: ADD, MAC1: SUB)

00010 DMUL 10010 RESERVED

00011 DMADD 10011 RESERVED

00100 DMSUB 10100 RESERVED

00101 DAVG 10101 RESERVED

00110 DMIN 10110 RESERVED

00111 DMAX 10111 RESERVED

01000 DCMPE 11000 RESERVED

01001 DAND 11001 RESERVED

01010 DOR 11010 RESERVED

01011 DXOR 11011 RESERVED

01100 DNAND 11100 RESERVED

01101 DNOR 11101 RESERVED

01110 DSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED

The Pre AM field is a specifier that selects if the base addressing mode is
Register direct or Register indirect. To the Register indirect mode, additional
post changes can be added. The available post changes are selected in the
Post AM field. These are fully described later in the addressing model of
DMAC.

The OpA0, OpB0, OpA1 and OpB1 each selects one of the four memories.
The Source base address field specifies the address that is used for all
memories. The Dest.base address field specifies the destination address for
OpB0 and OpB1.

The D field specifies if the destination is two memories or two ACR`s.

The 5-bit row offset in the instruction word is combined with the
configurable column offset to give a very flexible addressing that is close to

��

the table addressing in terms of flexibility. The possibility to specify the
Row offset directly in the instruction word is very flexible when writing the
assembler code. The Row offset can be changed without having to
reconfigure the processor.

The Index Reg selects one of the 32 GPR`s in the register file.

The choice between the Row offset and the index register, Index Reg, is
decided by the addressing mode. When using index addressing, Index Reg is
chosen and the Row offset is chosen when working with offsets.

The S/D_Sa field selects one of the eight serial ACR`s (SA`s) that is the
same in both serial data paths. They are both the source and the destination
ACR.

The SReg0 and S/DReg0 fields specify the first and the second source
register in MAC0. Implied addressing is used so the second source is also
the destination register. The registers are any of the GPR`s. The SReg1 and
S/DReg1 is designed identical to the SReg0 and S/DReg0 except that they
applies to MAC1 instead.

5.6.3 DMAC addressing model

The complete addressing for this processor is described in the chapter 4. In
the DMAC mode, the following is described.

If the addressing mode, Register indirect, is used, all four memories are
always used simultaneously. In this case, all memories uses the same base
address but can be separated by the individual offset.

The DMAC model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.9.

First, the DMAC instruction word is being read. Next the sources containing
data are determined and accessed. If the sources with the data are in the
memories, the APR is updated based on the incrementing technique that is
currently being used. Next the instruction is being executed and after this,
the results are being stored. Finally it starts all over again by reading the
next instruction.

��

Figure 5.9: The DMAC addressing flow graph

The available addressing modes for the DMAC mode of this processor are
listed in table 5.11. These modes are specified in the instruction word and
requires both the Pre AM and the Post AM. The individual offset is
applicable for all addressing modes.

��

Store the results in
memories, ACR`s or in register file.

Next instruction

Get the 4 sources
 either in all 4 memories or in

the register file

Read instruction word

Execute the DMAC instruction

If memory bank access is
needed. Generate address. Prepare for

an eventual loop. Incrementing
techniques etc.

Table 5.11: DMAC addressing modes

Pre
AM

Post
AM

Addressing mode Description

0 000 Register indirect,

no post changes

A <= aprX[15:0]

0 001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

0 010 Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

0 011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + AuxReg[15:0]

0 100 Register indirect + offset A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

0 101 Register indirect - offset A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

0 110 Reserved -

0 111 Reserved -

1 - Register direct No addresses

The DMAC also supports addressing with the extended addressing modes
that can be chosen inside the status register, STATUS. The extended
addressing modes is used in conjunction with the standard addressing
modes. The supported extended addressing modes can be seen in table 5.3.

�	

5.7 SIMD

In order to speed up media applications we have the ability to use the
processor in a SIMD mode. SIMD stands for Single Instruction Multiple Data.
Media applications, such as MPEG and JPEG for example, are very
computational intensive and requires the processor to work with a very
large amount of 8-bit data. In order to address this problem, the processor
have four parallel data paths that are optimized for running media
applications in parallel. This requires that the 8-bit data are prepared in the
memory as two 8-bit data in one 16-bit space. In this way we can access up
to 8 operands, 64 bits of data in one clock cycle. Up to four computations
can be run in parallel with a four times theoretical speed up in the best case.

The parallel data paths are not limited to 8-bits and can be used in two
configurations, the dual 8-bit mode and the single 16-bit mode. In the dual
8-bit mode, the data must be prepared in the memories but this is not
needed in the 16-bit mode. In the 16-bit mode, multiplications are not
supported in the parallel data paths.

Media applications that requires the processor to work with a large amount
of 16-bit data can be accelerated in the parallel data paths, if the 16-bit
mode is chosen or in the dual MAC structure. If 16-bit multiplications are
needed then the calculations must be done in the dual MAC structure. The
dual MAC structure will then work as a 16-bit SIMD mode. This mode of
operation is explained in sub-chapter 5.6.

The SIMD mode can be run simultaneously with the DMAC mode if the
DMAC uses only the register file. This offers a very high parallelism and the
greatest performance that this DSP processor can offer.

5.7.1 SIMD model

In the SIMD mode we only use the four parallel data paths in MAC0 for
acceleration of media applications. The parallel data paths are always
accessing the memories directly. The register file is never used. The serial
data paths can work in parallel with the parallel data paths as long as they
don't interfere with the memory accesses of the parallel data paths. If the
data is prepared in such a way that the serial data paths can use the register

�(

file most of the time, while the parallel data paths uses the memories, then a
very high performance could be achieved.

The parallel data paths access the memories through the use of eight 16-bit
address pointer registers for memory addresses. The description of the
address generation unit, AGU, that is responsible for that the correct
addresses is being generated, is described in chapter 4. There is also a
possibility to access eight 20-bit accumulator registers for each parallel data
path for saving intermediate results.

Each parallel data path can read from any memory in the memory bank
when operating in the 8-bit mode. When operating in the 16-bit mode, each
parallel data path reads one operand from the same memory number as the
data path number and the second operand it can get from any memory. As
an example p_dp0 reads from memory0 and from memory 1, 2 or 3. In this
way we access eight operands with only four sources. When writing to the
memory the memories are divided such that each parallel data path always
write back to the same memory numbers as data path number. As an
example, parallel data path0 writes to memory0.

The parallel data paths can accept 8-bit or 16-bit data as input, but
internally all computations have 20-bit precision. The 20-bit results can be
rounded, saturated and truncated in order to get the 16-bit native length at
the output.

5.7.2 SIMD instruction word

When designing our model we decided that the SIMD mode should be as
flexible as possible. However, this was not possible because of the limitation
of space in the instruction word. The trade off that was necessary to make
was to use a status register, STATUS, and instead put all our effort on
making the addressing as flexible and powerful as possible. The result is
that we can access 16-bit data in any way including any kind of Zig-Zag like
patterns.

The SIMD instruction word only uses register indirect addressing modes and
is because of this, like in the previous sub-chapters, illustrated as light gray.
The SIMD mode only uses memories and never the Register File.

��

The programmable part is put directly into the SIMD instruction word, see
figure 5.10.

�

%���

�

4��������

�

�1

�

�5

�

1�4

�

6

�

$�8�������

����0�$��

�

���
�
 ���

��������

�

6���)� ���
�������

-675�

Figure 5.10: SIMD instruction word

The design for an addressing that is as flexible as possible gives the demand
that each data path should be able to read from any memory with an
optional offset for the base address source. The addressing modes, AM`s,
for the SIMD mode are described later in this sub-chapter. All available
addressing modes can be found in chapter 4.

The IP field specifies the Input Precision and it can be 8 bits or 16 bits.
When the input precision is 8 bits, each 16-bit memory space is seen as 2 x
8 bits operands.

�
4���������

�
4��������

A 16-bit memory space when IP is 8 bits

When the input precision instead is 16-bit, each 16-bit memory space is
seen in the regular way as a 1 x 16-bit operand.

��
4��������

A 16-bit memory space when IP is 16 bits

The MAO, Memory Access Order, field describes in which order the parallel
data paths are accessing the memories in the memory bank. It works
different according to the input precision bit.

If the input precision bit is 8 bits, then the first 2 bits selects which memory
data path0 should access, the next 2 bits selects which memory data path1
should access, the next 2 bits selects which memory data path2 should

��

access and finally the last 2 bits selects which memory data path3 should
access.

Sometimes there might not be a need for all four data paths in the
computations. This processor supports the use of one or up to four data
paths. If a data path wants to access a memory that is already accessed by
another data path, then the data path is instead disabled. Some examples for
the 8-bit mode are given in table 5.12.

Table 5.12: Data path enabling via MAO when using the 8-bit mode

MAO
(dp0,dp1,dp2,dp3)

M# M# M# M#

dp
0

dp
1

dp
2

dp
3

Description

00 01 10 11 on on on on dp0 access M0, dp1 access M1, dp2 access M2, dp3
access M3

00 01 10 10 on on on off dp0 access M0, dp1 access M1, dp2 access M2

00 01 10 00 on on on off dp0 access M0, dp1 access M1, dp2 access M2

00 01 01 10 on on off off dp0 access M0, dp1 access M1, dp3 accessM2

00 00 00 10 on off off on dp0 access M0, dp3 access M2

01 01 01 01 on off off off dp0 access M1

Some examples for the 16-bit mode are given in table 5.13

Table 5.13: Data path enabling via MAO when using the 16-bit mode

MAO
(dp0,dp1,dp2,dp3)

M# M# M# M#

dp
0

dp
1

dp
2

dp
3

Description

00 01 10 11 off off off off All dp`s are disabled

01 10 11 00 on on on on dp0 access M0 & M1, dp1 access M1 & M2, dp2 access
M2 & M3, dp3 access M3 & M0

00 10 10 00 off on off on dp1 access M1 & M2, dp3 access M3 & M0

The number of used data paths are always checked and if there is a memory,
or more than one, that are not currently being used, the serial data paths

��

will be granted access, if needed.

The D field specifies if the destination is a memory or a parallel accumulator
register, Pa. The source ACR is always the same as the destination ACR. It
was designed in this way to provide easy looping. When a parallel ACR is
selected, it specifies all four ACR`s. If Pa0 is selected this means Pa0 in all
parallel data paths. The accumulation with the ACR`s can be turned off in
the status register, STATUS. This is useful when performing ALU
instructions.

There is a 5-bit row offset in the instruction word that can be combined
with the configurable column offset to give a very flexible addressing that is
close to table addressing in terms of flexibility. The decision to keep the row
offset in the instruction word is based on that a very a little offset, the row
offset, is used a lot and is really flexible from the programmers point of
view to have in the instruction word.

The choice between the Row offset and the index register, Index Reg, fields
is decided by the addressing mode. When using index addressing, Index Reg
is chosen and the Row offset is chosen when working with offsets. The
Index Reg specifies one of the 32 GPR`s in the Register File.

The base address gives an address that are the same in each memory. The
ACR field specifies one of the eight accumulator registers in each parallel
data path. The operation field describes the operations that are supported.
Type is the identification of this instruction word for SIMD operations.

All supported SIMD instructions that uses this instruction word are listed in
table 5.14. The “P” in all instructions stands for parallel and is only there for
differentiating between the standard ADD. As an example, PADD means
parallel add. There are 15 reserved instructions for future use.

��

Table 5.14: SIMD instruction list

Op Instruction Op Instruction
00000 PADD 10000 PSHRA

00001 PSUB 10001 Reserved

00010 PMUL 10010 Reserved

00011 PSAD 10011 Reserved

00100 PDOT 10100 Reserved

00101 PAVG 10101 Reserved

00110 PMIN 10110 Reserved

00111 PMAX 10111 Reserved

01000 PCMPE 11000 Reserved

01001 PAND 11001 Reserved

01010 POR 11010 Reserved

01011 PXOR 11011 Reserved

01100 PNAND 11100 Reserved

01101 PNOR 11101 Reserved

01110 PSHL 11110 Reserved

01111 PSHRL 11111 Reserved

5.7.3 SIMD Addressing model

The complete addressing for this processor is described in chapter 4. In the
SIMD mode, the following is described.

We are striving to address all four memories if all data paths are enabled,
otherwise as many as possible to drastically increase the performance.

Most of the operations that are provided in the parallel data paths are equal
and usually strongly ordered and it's enough to address only one memory
and use the same address for the others. In this case we will get some line of
data (same address, different banks). For some reasons and special cases it's
possible to address the other memories via a memory offset, using the
individual offset.

��

Each data path writes data to the address pointed out by the destination
base address or to the destination accumulator register. All data paths have
it's own set of eight ACR`s and it's own memory for writing. The parallel
data path, p_dpX, writes to memory, mX, where X is 0, 1, 2 or 3. In this way,
four different values are stored in the same address, but in different
memories.

The SIMD model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.11.

First, the SIMD instruction word is being read. The base address is being
read from the APR and then the APR is updated, for the next instruction
cycle, based on the incrementing technique that is currently being used.
Next the four sources containing the data are accessed. Next the instruction
is being executed and after this, the results are stored. Finally it starts all
over again by reading the next instruction.

Figure 5.11: The SIMD addressing flow graph

The available addressing modes for the SIMD mode of this processor are
listed in table 5.15. These modes are specified in the instruction word. The
individual offset is applicable for all addressing modes.

��

Store results in memories
 or in an ACR in each data path.

Next instruction

�ccess the data in 1-4 memories
 with the base address

Get the base address.
Prepare for an eventual loop.
Incrementing techniques etc.

Read instruction word

Execute the SIMD instruction

Table 5.15: SIMD addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0]

Post A <= aprX[15:0]

001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

010 Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

101 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

110 Reserved -

111 Reserved -

The SIMD also supports addressing with the extended addressing modes
that can be chosen inside the status register, STATUS. The extended
addressing modes is used in conjunction with the standard addressing
modes. The supported extended addressing modes can be seen in table 5.3.

��

5.8 PROGRAM FLOW

In order to control the instruction flow in the program memory of the DSP
processor, program flow instructions are needed. The program flow
instructions are responsible for jumping to addresses in the program
memory and, in the case of a a subroutine jump, also the return to the
address before the jump. The repeat instruction, for making hardware loops,
is also a program flow instruction.

There is not much improvements that can be done in the program flow in
order to increase the executional performance. We instead made the
program flow as simple and easy to use as possible.

5.8.1 Program flow model

The program flow instructions affects the program counter, PC, in the 64kW
program memory. They simply control in what order the instructions are
being executed.

There are three different types of jumps. The first is the ordinary jump that
jumps to a new program memory address. The second is a conditional jump
that is executed only if the condition is fulfilled. The third is a subroutine
jump which executes in the same way as the ordinary jump except that the
internal statuses of the processor are saved. The address is pushed to a PC
stack and this stack is then pulled when the return instruction occurs.

Most DSP processors have a repeat instruction and a loop instruction. While
these instructions are very similar in their executions, we have designed a
simple repeat instruction that supports both repeating and looping. The
repeat instruction take two arguments as input, the number of instructions
that should be repeated and the number of loops that should be performed.
This results in only one repeat instruction that is as easy to use for
repeating one instruction as it is to repeat multiple instructions and provide
a hardware loop.

��

5.8.2 Program flow instruction word

The instruction word is designed to be simple but still as flexible as
possible.

The Type field identifies that this is the Program flow instruction word. The
Op field specifies the instruction.

The Addr and the GPR field are simple switches that specify if the Address
field or the GPR field in the instruction word should be used. The address
field specifies an 16-bit immediate address for immediate execution. The
GPR field specifies one of the 32 GPR`s and inside that register, there is a
16-bit address.

The nr_of_instr, number of instructions, field specifies how many
instructions that should be repeated when using the repeat instruction. The
maximum number of instructions that can be repeated are 27.

The nr_of_loops, number of loops, field specifies how many loops that the
number of instructions, that are given by nr_of_instr, should be repeated
when using the repeat instruction. The maximum number of loops that are
supported are 216.

The Program flow instruction word is in figure 5.12.

�

%���

�

4�

�

����

�

95$

�

��7��7�����

16
Address

11
Unused

5
GPR

16
nr_of_loops

Figure 5.12: P_FLOW instruction word

When using conditional execution, we don't have a condition field but
instead have different instructions for different conditions. These
instructions only executes if the condition is fulfilled.

The supported instructions are listed in table 5.16.

�	

Table 5.16: P_FLOW instruction list

Op Instruction Op Instruction
0000 JMP 1000 JNC

0001 JGT 1001 JO

0010 JGTE 1010 JNO

0011 JLT 1011 CALL

0100 JLTE 1100 RTS

0101 JE 1101 RPT

0110 JNE 1110 RESERVED

0111 JC 1111 RESERVED

A description of each conditional instruction can be seen in table 5.17.

Table 5.17: Description of the conditional instructions
JGT Jump if greater than JNE Jump if not equal

JGTE Jump if equal or greater than JC Jump if carry out is set

JLT Jump if less than JNC Jump if carry out is not set

JLTE Jump if equal or less than JO Jump if overflow

JE Jump if equal JNO Jump if not overflow

�(

6
Assembler Design

6.1 Preview

When the structure of the instruction set is defined it's time for its
implementation and verification. It is a very important part of the processor
design flow because it shows if the specification requirements are fulfilled
or not. The task is in the translation of the input code (assembly code) to the
hexadecimal machine code suitable for this processor. For some reasons this
process could be named a compiler design. This chapter is aimed not only
on the detailed description of this compiler but also on the tools that have
been used during implementation. According to the design specification we
have followed the IEEE STD 649-1985 standard to design the assembly code
format.

6.2 Tools Description

To design the language translator of assembly code to hexadecimal code we
have chosen the LEX & YACC tools. The language translator is a program
which translates programs that are written in a source language into an
equivalent program in an objective language. In our case the source
language is the designed assembly code, the object language is the machine
code of an actual processor. From the pragmatic point of view, the
translator defines the semantics of the source language, it transforms
operations specified by the syntax into operations of the computational
model, into binary control code in our case. Then, the simulator which has
been written especially for this reason, will read this binary code and
generate the corresponding control signals. For a detailed description of the
designed instruction set simulator, refer to chapter 7 of this document.

��

We have designed a compiler, a translator with a source assembly code and
with the object machine binary code. The typical compiler consists of
several stages:

� The lexical stage (so-called scanner) groups characters into lexical units
or tokens. The input to the lexical stage is a character stream, and the
output is the stream of tokens. Regular expressions are used to define
the tokens recognized by the scanner. The scanner is implemented as a
finite state machine. Lex is a tool for generating scanner. In this work we
have used FLEX, it's a fast version of Lex, working within GNU. They are
absolutely identical from the coding point of view. Here and after all
references will be on the Flex tool.

� The parser stage groups tokens into syntactical units. The output of the
parser is a parse tree representation of the program. Context-free
grammars are used to define the program structure recognized by a
parser. The parser is implemented as a push down automate [5]. Yacc is a
tool that generates the parser. Same as with the Flex we have used the
accelerated version of the Yacc tool. Here we have BISON tool. Bison tool
is working withing the GNU too. We will refer here and after to Bison tool.

� The semantic analysis stage analyze the parse tree for context-sensitive
information and generates an output as an annotated parse tree. During
the parsing, information concerning variables and other objects is stored
in the so-called symbol tables.

� The code generator stage transforms the annotated parse tree into object
code using rules which denote the semantics of the source language.

� Finally, build-in optimizers examine the object code for some dependent
machine improvements.

By using Flex & Bison it's becoming much easier to design the required
compiler. During the design of the assembler we tried to do it in a way that
would be as easy as possible for fast and simple changes in the assembler
structure. These changes can take place in the future during the debug and
verification stages of the instruction set. The compiler design flow is shown
in figure 6.1.

��

Figure 6.1: Compiler design flow diagram

Both Flex and Bison programs should be written in parallel. And of course
should use the same variables. Both these programs are generators of the
C++ code. First, the code that has been written in the Yacc shell (bison.ypp)
should be passed through Bison tool. It generates two files, the c++ code for
the parser – bison.tab.cpp and the header file which consists of all tokens
description for the Flex tool – bison.tab.hpp. Second, the code that has been
written in the Lex shell (scanner generator: flex.l) according to the bison's
header passes through the Flex tool, as a result the lex.yy.cpp file is
generated.

Then, both these automatically generated files should be compiled (we used
g++ compiler) to get the output executable file which is itself the final
Assembler. For a more detailed description of the compiler design please
refer to complete Lex & Yacc manual by John R. Levine [6].

��

 ����)������0)�

 ����)��)���

��0)��)
��� ����)��)
��

2��0 "����

�::�

�������

+�������

6.3 Assembler Design Flow

For clear understanding of the Assembler design process take a look at the
flow chart diagram shown in figure 6.2. According to the compiler design
strategy the parser and the scanner source codes have been generated. A
number of auxiliary files are also existed. There are the headers and
functions description libraries for the instructions and for the auxiliary
functions to perform computations, input/output, debugging.

Figure 6.2: Assembler Design Flow

��

2��0 "����

���)� ���)���

�::

�������

������
�����

������
���
�����

����

/��

����
������;

<�

=��

=��

=��

=��

6.4 Assembler Features

During the research we have found that it's really necessary to design such a
flexible structure and processor architecture as possible. A lot of problems
and troubleshooting have occurred during this design stage. For example
the assembler design causes many problems with the sizing of the data
fields in the instruction words, some structures or ideas could not even be
implemented because of the coding style. With increasing of experience in
the instruction set design we had to change some of the already
implemented and workable parts. The additional trouble causes the fact that
we have to verify both scanner and parser at the same time and some design
ideas even were canceled, only because of an unideal code style. For
example, the limitation of number of specifiers in the instruction word.

The final version of the scanner/parser code is really open for adding extra
specifiers into the instruction word or whatever the programmer or designer
wants. The main idea is in simplicity of the scanner code. Now there are only
three main structures in the assembly code to detect (to scan). They are a
“number”, an “identifier” and a “char”. Actually, we do not need any more
and can describe any of the assembler specifiers:

� label – is an identifier specified strongly in the beginning of the assembly
line, for example:
loop
begin

� mnemonic – is a possible identifier like add, and, or nop. These
identifiers must not be in the begin of the line

� argument – could be described with the help of an identifier structure or a
number structure

� flag - is a possible identifier. They have not been used in this instruction
set, but it's possible to implement them

� immediate data – is a number structure of data, possible to be
represented via the decimal, binary, octal, or hexadecimal format:
15, '1111', 'F'

��

� any other characters

The rest computations and allocations of the data are made with the help of
support functions. Data are taken from the symbol tables and the
instruction description header does also exist. This makes the future work
with this scanner/parser much easier for updating and for changing.

6.5 Results

To show the abilities and relative advantages of this processor three types of
instructions have been implemented for compilation, MOVE instructions,
Program Flow instructions, and SIMD instructions. The rest types of
instructions unfortunately have not been implemented yet because of the
time deficit. But this set of implemented instructions let us check and
simulate this processor using the SIMD data paths.

As a result of compilation the output (for instance “input.hex”) hexadecimal
file is generated if there were no errors or warnings. The Instruction Set
Simulator is getting the hex file and doing its job.

��

7
Instruction Set Simulator

7.1 Preview

The simulator model is an instruction set simulator, ISS, and is implemented
in C++. This programming language was chosen because it's widely taught
and understood. It's easy to work with and good results can be achieved
pretty fast. If any questions occurs, it's always easy to find the answers in
books and on Internet because C++ is so widely spread and used that there
are always somebody else before you that have had the same problems.
However, there might be better to use another programming language that
has better support for binary programming because this is C++ biggest
flaw.

The task of the ISS is to read 32-bit binary instructions from the program
memory, disassemble them to a readable form, execute the instructions and
do any post processing such as writing back results. Finally the next
instruction is being read from the program memory and it starts all over
again.

All processing cycles are counted and are printed to the screen in the end.
The ISS counts program cycles and executional cycles that takes the pipeline
into account. This is useful for benchmarking different simulator programs
such as FIR, DCT, FFT as some examples.

7.2 Simulator Model

The ISS can copy hex files, that is generated by the Assembler, to the
program memory. It can copy it to any memory address inside the program

��

memory. The ISS converts the hex code in the hex files to the binary format
that the program memory needs. It can then execute all or as as many
program memory lines as the user wants. Every program memory line is a
new instruction. All the binary instructions are disassembled and the
instructions are printed to the screen. The ISS also has a Debug mode for
debugging. When it's used, the instructions are executed one at a time and
the result after each execution is printed to the screen.

A more detailed description of each step in the ISS is described in sub-
chapters 7.3, 7.4 and 7.5.

7.3 The Start Procedure

When the ISS starts it will provide the user with three options. The first is to
load a file to the program memory, the second is to execute the instructions
in the program memory and the third is to quit the simulator program. The
start procedure is shown in figure 7.1.

Figure 7.1: The start procedure of the ISS

��

Start

1. Load
2. Execute
3. Quit

3?
Yes

Quit

2?
Yes

Execute

1?
Yes

Load

7.4 The Load Procedure

When load is selected, the user have to start by typing in the filename of the
hex file that should be copied to the program memory. If the hex file is not
in the working library, the complete reference to it must be specified. As an
example, c:/folder1/folder2/file.hex loads the file.hex. If the file doesn't
exist, there is a choice to either quit or try again. When the file is found, the
program asks how many lines of code that should be copied and to what
start address in the program memory. In this way more programs can be
copied to the program memory without overwriting any previous programs.
After finishing the copying of the hex file, the ISS automatically chooses the
execute option. The load procedure is shown in figure 7.2.

Figure 7.2: The load procedure

�	

Load

Enter filename

File exists? Try again?

Enter #lines

Enter
PM start address

Execute

No

Quit

Copying

No

Try again?

7.5 The Execute procedure

When executing the ISS, the user must enter where, in the program memory,
the test program is. The ISS provides the user with three options for doing
this.

The first is to only enter how many instruction lines in the program memory
that should be executed. With this option the ISS will start reading from the
beginning, at address zero. If zero is typed as the number of instructions,
then all instructions in the program memory will be executed.

The second choice is very similar to the first one. Here the user also must
specify how many instruction lines that should be executed but this time a
start address must also be given. This gives the possibility to start from
anywhere in the program memory.
The third option is even more flexible. Here the start address and a end
address must be given. The ISS then executes all instructions between, and
including, the start and the end addresses.

Before reading the instructions in the program memory the ISS asks the user
if the debug mode should be used. If the debug mode is used, there is a
choice between executing one instruction at a time or executing all. When
executing one instruction at the time, the user have the choice between
continue or quit after each instruction. The results after the executions are
only printed to the screen in the debug mode.

Finally when all decisions are made, the ISS starts simulate. First, it reads
the first instruction line, decodes and disassembles it. The disassembled
instruction is printed to the screen. If the instruction is not a branch, the
correct addresses is being generated, the sources collected, the operation is
executed and the results are written back. If the instruction is a branch,
there are two possible scenarios. The first is that the branch is not taken
and in this case the execution continues as usual. The other is that the
branch is taken and in this case, the new branch address is generated and
the program will jump to this in the next simulator cycle. If it's a subroutine
jump, the internal status is saved.

When continuing, the cycle counter and the program counter, PC, are
updated. The program counter now points at the next instruction in the

	(

program memory. It all starts over again by reading the next instruction.
After each simulator cycle, the ISS checks if it was the last instruction that
was executed. If this is the case, then the final result and the number of
cycles are printed to the screen.

The executing procedure can be seen in figure 7.3.

	�

Figure 7.3: The execute procedure

	�

Execute

Enter:
1. #instr. to execute
2. Start PM address and #instr. to execute
3. Start PM address and end PM address

1 or 2?

Enter #instr.

Yes
Enter start address

3?

Enter end address

No

Debug mode?

Debug?
Yes

One instr. at a time?

Read a PM line

Decode

Disassemble

Branch?
Yes

New PC

Execute (Generating
addresses, compute,
writing results etc.)

Taken?

PC=PC+1

Yes

Cycle counter

 One
 instr. at a
 time?

Show results
Yes

Continue?

Continue?

Last instr.?Show results
Yes

Yes

Show cycles

Quit

7.6 Results

When designing the simulator it was discovered that some of the design
steps was hard to implement and some could not be implemented at all.
This forced us to redesign the instruction set many times. It might have
been better to start designing the simulator earlier in the project instead of
in the end in order to find the design mistakes at an earlier stage.

Only MOVE, SIMD and P_FLOW was implemented in the simulator. This was
because of the time limit of this project. However, it might have been better
to implement some other instruction types instead because the SIMD mode
is designed for accelerating of media applications and is not so useful for
some of the standard algorithms that the competitors use for
benchmarking. In this way, it's quite hard to compare this DSP processor to
the competition. In those cases that we were able to benchmark this
processor in the same way as the others the performance was impressive.
More about the benchmarks is in chapter 8.

	�

	�

8
Benchmarking

8.1 Preview

Benchmarking is used for revealing strength and weakness of the processors
in certain applications. And now, when the instruction set simulator is ready
to use, we can check our processor architecture and the instruction set for
reaching the specification requirements. The only way of checking is to write
some special programs (assembly code) for this processor. As a result of
passing this program through the ISS, the number of expended clock cycles
are counted.

8.2 Benchmarking Strategy

The designed MDSP processor was aimed at media data processing. The
most popular and often used media algorithms are JPEG, MPEG and MP3.
According to the designed processor architecture we have SIMD data paths,
and single MAC data paths. In order to speed up the benchmark processing,
the Dual MAC mode is also used.

The SIMD data paths should be used for eight-by-eight bit multiplication
loops algorithms, for calculating vector DOT multiplication product (motion
compensation stage of a MPEG) or for calculating “sum of absolute
differences” product (motion estimation stage).

DMAC hardware is used for those algorithms that use the sixteen-by-
sixteen bit multiplication loops.

	�

Any algorithm can be realized with the defined level of precision. Of course
we can launch 8-bit media data in the SIMD for calculating FFT benchmark
and get a good result in terms of clock cycles. But in this case we will loose
precision. For high colors applications, like a 10-12 bits per pixel for
example, programmer should use the DMAC hardware and write the
corresponding assembly code. This processor let us make this choice.

8.3 Results

Unfortunately we did not implement all above algorithms in the designed
instruction set, and therefor can't answer clear about the processor
performance, because of the lack of the DMAC instructions. This research
work had only 20 weeks length and we did not have time for implementing
the FFT and the DCT benchmarks. We propose these activities for future
works with this processor.

We just want to show the abilities of four SIMD parallel data paths structure
in the Real Single Sample FIR benchmark. See the comparisons in table 8.1:

Table 8.1: FIR benchmark

Benchmark / Vendor BDTI avg. MDSP
Real Single Sample FIR-16, #cycles 22 20(11)

The full cycle cost of the benchmark is 20. The core part (calculations and
storing the result) takes only 11 cycles. The rest nine cycles have been spent
for moving of data and configure the processor.

	�

9
Conclusions

This chapter presents the results and the conclusions from the project and
summarizes all designers ideas for future changes and improvements.

9.1 Results

From the beginning of this final year project we aimed for designing a high
performance DSP with accelerated media functions. We soon realized that
this was impossible with the limited time that was offered. We decided to
focus on the SIMD part of the design and all our results are based on this.

In fact, we have designed the processor's core according to a given
specification. We have researched the possibility's for hardware accelerating
of media DSP applications. The complete instruction set for the designed
processor is presented in this work (except interrupts handling). The
instruction set simulator was designed only for SIMD parallel computational
paths of the processor. We have stopped at the benchmarking design step
due to lack of time and have not completely verified our architecture and
instruction set. That is why we can't release the performance results and can
only expect them according to our research efforts.

The designed processor should show good performance for 8/16-bit
convolution based algorithms. The motion estimation and compensation
(MPEG) applications should also be solved very well because of the
architectural improvements made especially for them. The designed
addressing models gives the opportunity to process the multidimensional
media algorithms with a high-level of flexibility of the data accesses.

	�

The high level of orthogonality of the instruction set and the architecture
gives the designers the possibility of using all available (6!!!) data paths
simultaneously. In this way, six different results are calculated at the same
time, four loop results to the memories, and two auxiliary register
operations.

The SIMD parallel data paths can process 8-bit media data with a great
performance for non high-quality color applications, up to five significant
bits per pixel. To process data with high-quality colors, programmers
should use the DMAC mode.

In addition, the sophisticated ALU unit offers the possibility to speed up the
execution of logic, arithmetic, and shift operations.

The designed instruction set is quite flexible for future improvements and
changes.

9.2 Future work and improvements

All incomplete issues and activities for this processor should be finished in
order to release the core. Completing the architecture and implementing it
in RTL code with a following verification.

In the SIMD part, the memory accessing could be changed for a more flexible
way to address data. In our design, when working with 8-bit data, we store
two operands in each memory line. However this is not good for some
applications where we have to multiply the data with coefficients as in FFT,
FIR for example. It would be better if we could access two 8-bit operands
from different memories instead. In this case we could use two memories
that contains the data and the other two can contain the coefficients. If this
is done and we use modulo addressing on the coefficient memories, then
the performance of coefficient based applications can be greatly improved.

In our research we did not pay attention on the interrupts handling.
Interrupts of course are necessary for proper processor's exploitation. The
direct memory access (DMA) unit could significantly improve the total
processor performance due to data memory accesses are always the
bottleneck.

	�

A.1
Serial data path

Serial data path architecture is shown on the figure at the next page.

Symbol description:

SE – sign extension block
G – guard bit extension block
S/U – signed/unsigned data switch
P – pipeline register
F/I – fractional/integer data switch
MX – multiplexer
SAT – saturation arithmetic block
LSB – least significant bit
Op�>�4�"�?��������

		

�((

A.2
Parallel Data Path

Parallel data path architecture is shown on the figure at the next page.�

Symbol description:

P_MUL[0-3] – multiplication block, identical to serial data path
P_SHIFT[0-3] – shift block, identical to serial data path
P_Post Processing[0-3] – guard bit extension block
MX – multiplexer
Op[0-3] -operands

�(�

�(�

B.1
A guide to the instruction set

�(�

Descriptions that are the same for all instruction types

Field descriptions

Syntax Description
Type The instruction type

OP The operation code

AM Addressing mode selection

mS, mD Memory source and memory destination. Selects M0-M3

S_point, D_point Source pointer and destination pointer. Selects APR0-APR7

SReg, DReg Source register and destination register. Selects GPR0-GPR31

S_ACR, D_ACR Source and destination accumulator. Selects ACR0-ACR7

ImmX X-bit immediate data or X-bit immediate address

Instruction TYPE list

Type Instruction Notes
000 MOVE Load/store data to/from memories

001 ALU ALU instructions for the 16-bit serial data path only

010 MAC MAC instructions for the 16-bit serial data path only

011 DMAC Two 16-bit serial data paths

100 SIMD Four 8-16-bit parallel data paths

101 P_FLOW Program Flow instructions

110 RESERVED Reserved type for future use

111 RESERVED Reserved type for future use

Memory selection

mS/mD Memory Description
00 0 Memory 0 in the memory bank

01 1 Memory 1 in the memory bank

10 2 Memory 2 in the memory bank

11 3 Memory 3 in the memory bank

�(�

The Status register, STATUS

�

$��

�

%� ��

�

�+$
,��-���.

��

/0������
�1

�

���������-
+����

�

�������-
2��
������

�

�����-
3�������

�

��
,��-���.

�

$���!
%���
���

Status register, STATUS

Description of the STATUS fields

Rnd & Truncate

Code Description
00 No round & truncation

01 Round & truncate to 8-bits

10 Round & truncate to 16-bits

11 Reserved

Sat

Code Description
0 Saturation mode is off

1 Saturation mode is on

Signed/Unsigned

Code Source1 Source2
00 unsigned unsigned

01 unsigned signed

10 signed unsigned

11 signed signed

�(�

Integer/Fractional

Code Description
0 Fractional mode

1 Integer mode

Saturation/Carry

Code Description
0 Carry arithmetic

1 Saturation arithmetic

Extended AM (applies to ALL addressing modes)

Code Addressing mode Description
00 Not used No extended addressing mode

01 Bit Reversed Addressing Bit Reversed Addressing

10 Modulo addressing Modulo addressing

11 Memory indexing addressing Table addressing

ACR

Code Description
0 Accumulation mode off

1 Accumulation mode on

�(�

TABLE

Code
Column Row

Description
(Table registerX=TrX)

Code
Column Row

Description
(Table registerX=TrX)

00 00 Tr0/Tr0 specifies the
Column/Row offset

10 00 Tr2/Tr0 specifies the

Column/Row offset

00 01 Tr0/Tr1 specifies the
Column/Row offset

10 01 Tr2/Tr1 specifies the

Column/Row offset

00 10 Tr0/Tr2 specifies the
Column/Row offset

10 10 Tr2/Tr2 specifies the

Column/Row offset

00 11 Tr0/Tr3 specifies the
Column/Row offset

10 11 Tr2/Tr3 specifies the

Column/Row offset

01 00 Tr1/Tr0 specifies the
Column/Row offset

11 00 Tr3/Tr0 specifies the

Column/Row offset

01 01 Tr1/Tr1 specifies the
Column/Row offset

11 01 Tr3/Tr1 specifies the

Column/Row offset

01 10 Tr1/Tr2 specifies the
Column/Row offset

11 10 Tr3/Tr2 specifies the

Column/Row offset

01 11 Tr1/Tr3 specifies the
Column/Row offset

11 11 Tr3/Tr3 specifies the

Column/Row offset

�(�

Type1: MOVE instructions (000)

�

%���

�

45

�

�1

�

-6

�
3������

�
����0�$���

�

$��

��

4�����

�

�

�

7�����

7�+$

�

6$��

��
�����

�
�6

�
67�����

MOVE instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the MOVE instruction word

Field Description
S/D BRM: Selects if the source is a GPR (00), a serial ACR (01),

 a parallel ACR (10) or a memory (11)

LD: Selects if the destination is a GPR (00), a APR (01) or

 a memory (10).

CLA: Selects if the accumulator is a serial accumulator in MAC0 (00),

 a serial accumulator in MAC1 (01), both serial accumulators (11)

 or all four parallel accumulators (10)

AM Selects the addressing mode. Only for memory instructions.

Index Reg Selects one of the 32 GPR`s when using Index addressing

�(�

MOVE instruction list

Op Instruction Description
000 NOP No Operation

001 BMM Between Memory and Memory

010 BRM Between Register and Memory

011 BRR Between Register and Register

100 SWP SWaP data between registers

101 CLA CLear Accumulator

110 LD LoaD to register or memory with immediate data

111 Reserved -

MOVE addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0]

001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

010 Register indirect,

post decremented by 1 (--)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (column + row offset)

101 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] – (column + row offset)

110 Reserved -

111 Reserved -

�(

Type 2: ALU (001)

�

%���

�

&���

�

���������

�

����

�

�1

�

$���

�

$���

�

-6$��

�

�
�

�

7������

�
�
�

�

7������

$�8�������

����(

�

�
-
6

�

-67���

��

-67
�

ALU instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the ALU instruction word
S/D_Sa Selects one of the eight serial ACR`s in the serial data path of MAC0. It

specifies both the source and the destination.

S/D_point The destination APR.

It's also the source when working with immediate data

Logic Selects a logic instruction

Arithmetic Selects a arithmetic instruction

Shift Selects a shift instruction

The LOGIC instruction list

Op Instruction Op Instruction
000 NOP 100 NOT

001 AND 101 NOR

010 OR 110 NAND

011 XOR 111 Reserved

��(

ARITHMETIC instruction list

Op Instruction Op Instruction
00000 NOP 10000 Reserved

00001 ADD 10001 Reserved

00010 SUB 10010 Reserved

00011 INC 10011 Reserved

00100 DEC 10100 Reserved

00101 MIN 10101 Reserved

00110 MAX 10110 Reserved

00111 ABS 10111 Reserved

01000 SUBABS 11000 Reserved

01001 ABSSUB 11001 Reserved

01010 ADDABS 11010 Reserved

01011 ABSADD 11011 Reserved

01100 AVG 11100 Reserved

01101 CMPE 11101 Reserved

01110 NEG 11110 Reserved

01111 Reserved 11111 Reserved

SHIFT instruction list

Op Instruction Op Instruction
000 NOP 100 Reserved

001 SHRA 101 Reserved

010 SHRL 110 Reserved

011 SHL 111 Reserved

���

ALU addressing modes

AM Addressing mode Description
000 Register direct No address

001 Register direct

with immediate data

No address

010 Register indirect A <= aprX[15:0]

011 Register indirect

with immediate data

A <= aprX[15:0]

100 Register direct,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

101 Register direct,

post decremented by 1 (--)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

110 Register direct,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (column + row offset)

111 Register direct,

post decremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] – (column + row offset)

���

Type 3: MAC instructions (010)

3

Type

4

Op

3

AM

2

D

5
Index Reg

5 SReg1 5
SReg2

5
DReg

Row offset

2
mS1

3
S_point1

2
mS2

3
S_point2

2
mD

3 D_point

S/D_SA

MAC instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the MAC instruction word
D Destination selection. (00) selects Dreg, (01) selects mD, Dpoint and (10)

selects the S/D_ACR

S/D_SA Selects one of the eight ACR`s in the serial data path of MAC0. It specifies
both the source and the destination.

MAC instruction list

Op Instruction Op Instruction
0000 MUL 1000 Reserved

0001 MADD 1001 Reserved

0010 MSUB 1010 Reserved

0011 Reserved 1011 Reserved

0100 Reserved 1100 Reserved

0101 Reserved 1101 Reserved

0110 Reserved 1110 Reserved

0111 Reserved 1111 Reserved

���

MAC addressing modes

AM Addressing mode Description
000 Register direct No address

001 Register indirect A <= aprX[15:0]

010 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

011 Register indirect,

post decremented by 1 (--)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

100 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Aux.Reg

101 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

110 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset – row_offset)

111 Reserved -

���

Type 5: Dual MAC instructions (011)

�

%���

�

4�

�

5��
�1

�������

5���
�1

�

4��
(

�

4�"
(�

�

4��
��

�

4�"
��

�

6

�

$�8�������

�
����0�$��

�

���
�
 ���

��������

�

6���)
 ���

�������

-67
�

�

$��(

�

-6$��(

�

$���

�

-6$���

�

-67
�

DMAC instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

���

Additional field descriptions for the DMAC instruction word
Pre AM Selects if addressing mode is Register indirect (0) or Register direct (1)

Post AM Selects the post changes for Register indirect

OpA0 Selects one of the four memories that
gives Operand A for MAC0

OpB0 Selects one of the four memories that
gives Operand B for MAC0

OpA1 Selects one of the four memories that
gives Operand A for MAC1

OpB1 Selects one of the four memories that
gives Operand B for MAC1

OpXY selects one of the four memories
and together with the base address, that
is the same for all memories, four
operands are given. The operands are
taken from four different memories.

D Selects if the destination is a memory (0) or an accumulator register (1) when
using Register indirect

S/D_SA Selects one of the eight serial ACR`s (SA`s) that is both the source and
destination when ACR is turned on in the status register, STATUS

SReg0 Selects one of the 32 GPR`s that is the source 1 for MAC0

S/DReg0 Selects one of the 32 GPR`s that is the source 2 for MAC0.

When implied addressing is used, this is also the destination

SReg1 Selects one of the 32 GPR`s that is the source 1 for MAC1

S/DReg1 Selects one of the 32 GPR`s that is the source 2 for MAC1.

When implied addressing is used, this is also the destination

���

DMAC instruction list

Op Instruction Op Instruction
00000 DADD 10000 DSHRA

00001 DSUB 10001 BUTFLY (MAC0: ADD, MAC1: SUB)

00010 DMUL 10010 RESERVED

00011 DMADD 10011 RESERVED

00100 DMSUB 10100 RESERVED

00101 DAVG 10101 RESERVED

00110 DMIN 10110 RESERVED

00111 DMAX 10111 RESERVED

01000 DCMPE 11000 RESERVED

01001 DAND 11001 RESERVED

01010 DOR 11010 RESERVED

01011 DXOR 11011 RESERVED

01100 DNAND 11100 RESERVED

01101 DNOR 11101 RESERVED

01110 DSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED

���

DMAC addressing mode

Pre
AM

Post
AM

Addressing mode
(Individual offset is applicable for all

AM`s)

Description

0 000 Register indirect,

no post changes

A <= aprX[15:0]

0 001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

0 010 Register indirect,

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

0 011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Index Reg[15:0]

0 100 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

0 101 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

0 110 Reserved -

0 111 Reserved -

1 - Register direct No addresses

���

Type 6: SIMD instructions (100)

�

%���

�

4��������

�

�1

�

��5

�

1�4

�

6

�
$�8�������

��0)�$�������

�

���
�
 ���

��������

�
6���)
 ���

�������

-67��+$

SIMD instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only*

The fields are used with both Register direct and Register indirect addressing modes

*The SIMD mode only supports Register indirect addressing modes

Additional field description for the SIMD instruction word
IP Selects if the Input Precision (IP) is 8-bit (0) or 16-bit (1)

D Selects if the Destination (D) is a memory(0) or an ACR(1)

MAO Memory Access Order. See description in the table below

Memory Access Order, MOA (M0=00, M1=01, M2=10, M3=11)

Input Precision is 8-bit (IP=0) Input Precision is 16-bit (IP=1)
Data
path0

Data
path1

Data
path2

Data
path3

Data
path0

Data
path1

Data
path2

Data
path3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 and
M1 or
M2 or

M3

M1 and
M0 or
M2 or

M3

M2 and
M0 or
M1 or

M3

M3 and
M0 or
M1 or

M2

��	

SIMD instruction list

Op Instruction Op Instruction
00000 PADD 10000 PSHRA

00001 PSUB 10001 RESERVED

00010 PMUL 10010 RESERVED

00011 PSAD 10011 RESERVED

00100 PDOT 10100 RESERVED

00101 PAVG 10101 RESERVED

00110 PMIN 10110 RESERVED

00111 PMAX 10111 RESERVED

01000 PCMPE 11000 RESERVED

01001 PAND 11001 RESERVED

01010 POR 11010 RESERVED

01011 PXOR 11011 RESERVED

01100 PNAND 11100 RESERVED

01101 PNOR 11101 RESERVED

01110 PSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED

��(

SIMD addressing modes

AM Addressing mode
(Individual offset is applicable for all

AM`s)

Description

000 Register indirect A <= aprX[15:0]

001 Register indirect,

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

010 Register indirect,

post decremented by 1 (--)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect,

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

101 Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

110 Reserved -

111 Reserved -

���

Type 7: Program flow instructions (101)

�

%���

�

4�

�

����

�

95$

�

��7��7�����

16
Address

11
Unused

5
GPR

16
nr_of_loops

P_FLOW instruction word

Additional field descriptions for the P_FLOW instruction word

Addr Selects the address field (1) as destination

GPR Selects the GPR field (1) as destination

nr_of_loops The number of loops the instructions should be repeated when using
the RPT instruction

nr_of_instr The number of instructions that should be repeated when using the
RPT instruction

P_FLOW instruction list

Op Instruction Op Instruction
0000 JMP 1000 JNC

0001 JGT 1001 JO

0010 JGTE 1010 JNO

0011 JLT 1011 CALL

0100 JLTE 1100 RTS

0101 JE 1101 RPT

0110 JNE 1110 RESERVED

0111 JC 1111 RESERVED

���

B.2
Instructions Description

This is the full description of all instructions for the processor. There are six
instruction types in the set. We have collected instructions according to
their alphabetical order. The description includes the following fields:

• Type of instruction – gives the short instruction description and
points on the instruction functional group.

• Syntax – shows how the assembly code looks like
• Operands – what are the data sources
• Execution – what the instruction does
• Description – flags updating, functional description, any other

comments
• Example – execution example

Symbol description

(a|b|) – a or b or nothing
() – optional parameter is inside these brackets
m(aprX)_Y – the data pointed by aprX in the memory bank Y
h’xxxx’ – hexadecimal data representation
b’xxxx’ – binary data representation
i/f – integer/fractional data representation
s/u – signed/unsigned data representation
d – register direct addressing
di – register direct with immediate data
i - register indirect addressing
ii – register indirect with immediate data
ppo/pmo - register indirect plus/minus offset addressing

���

ABS

Type of instruction:
ALU instruction. Absolute value, serial data path.

Syntax:
abs am, rS1, (rS2), rD
abs am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 -> abs(S1)

Description:
The instruction returns the absolute result from a 16-bit signed operand,
the result is placed into the memory, or into the register, selected by the
addressing mode. The flags are updated.

Example:
abs pinc, 1,apr3, 0,apr0

Operand Before After

apr3 h’000F’ h’0010’
m(apr3)_1 h'FFFE' h'FFFE'
m(apr0)_0 h'0000' h'0002'

���

ABSADD

Type of instruction:
ALU instruction. Absolute value of the addition product, serial data path.

Syntax:
absadd am, rS1, (rS2), rD
absadd am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1 + S2) -> D

Description:
The instruction returns the absolute value of the sum of two 16-bit s/u or
one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
are updated.

Example:
absadd i, 2,apr2, 0,apr3, 1,apr7

Operand Before After

m(apr2)_2 h’0010’ h’0010’
m(apr3)_0 h'FFFE' h'FFFE'
m(apr7)_1 h'0000' h'000E'

���

ABSSUB

Type of instruction:
ALU instruction. Absolute value of the subtraction product, serial data path.

Syntax:
abssub am, rS1, (rS2), rD
abssub am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1 – S2) -> D

Description:
The instruction returns the absolute result of the subtract of two 16-bit s/u
operands or one 16-bit operand with 10-bit immediate data. The result is
placed into the memory, or into the register, selected by the addressing
mode. The flags are updated.

Example:
abssub d, r6, r0, r15

Operand Before After

r6 h’000F’ h’000F’
r0 h'0010' h'0010'
r15 h'0000' h'0001'

���

ADD

Type of instruction:
ALU instruction. An addition, serial data path.

Syntax:
add am, rS1, (rS2), rD
add am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 + S2 -> D

Description:
The instruction returns the the sum of two 16-bit s/u operands or one 16-
bit operand with 10-bit immediate data. The result is placed into the
memory, or into the register, defined by addressing mode. The flags are
updated.

Example:
add d, r5, r4, r3

Operand Before After

r5 h’0002’ h’0002’
r4 h’FFFF’ h’FFFF’
r3 h’0000’ h’0001’

���

ADDABS

Type of instruction:
ALU instruction. An addition of absolute values, serial data path.

Syntax:
addabs am, rS1, (rS2), rD
addabs am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1) + abs(S2) -> D

Description:
The instruction returns the the sum of absolute values of two 16-bit signed
operands or one 16-bit operand with 10-bit immediate data. The result is
placed into the memory, or into the register, selected by the addressing
mode. The flags are updated.

Example:
addabs d, r6, r0, r15

Operand Before After

r6 h’FFFF’ h’FFFF’
r0 h'FFFE' h'FFFE'
r15 h'0000' h'0003'

���

AND

Type of instruction:
ALU instruction. Bitwise AND, serial data path.

Syntax:
and am, rS1, (rS2), rD
and am, mS1,aprS1, (mS2,aprS2), mD,aprD
and am, imm10, rS/D
and am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 AND S2 -> D

Description:
The instruction returns the bitwise AND product of two 16-bit s/u operands
or one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
and d, r5, r10, r0

Operand Before After

r5 h’F001’ h’F001’
r10 h’2001’ h’2001’
r0 h’0001’ h’2001’

��	

AVG

Type of instruction:
ALU instruction. Average value, serial data path.

Syntax:
avg am, rS1, (rS2), rD
avg am, mS1,aprS1, (mS2,aprS2), mD,aprD
avg am, imm10, rS1/D
avg am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
(S1 + S2)/2 -> D

Description:
The instruction returns the average result from two 16-bit s/u operands or
one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
avg i, 1,apr5, 2,apr4, 0,apr0

Operand Before After

m(apr5)_1 h'0002' h'0002'
m(apr4)_2 h'0006' h'0006'
m(apr0)_0 h’0000’ h’0004’

��(

BMM

Type of instruction:
Move instruction. Between memory-memory.

Syntax:
bmm am, mS,aprS, mD,aprD
bmm am, rX, mS,aprS, mD,aprD
bmm am, imm11, mS,aprS, mD,aprD

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
imm11: [0x000 – 0x7FF]
rX: r0 – r31
mS, mD: 0 - 3
aprS, aprD: apr0 - apr7

Execution:
m(aprS) -> m(aprD)

Description:
Between memories communications. It copies the data from the source
memory place to the destination memory place. Does not update any flags.

Example:
bmm ppo,5, 3,apr2, 1,apr0

Operand Before After

m(apr2)_3 h’0230’ h’0230’
m(apr0)_1 h’0000’ h’0230’

apr2 h’0001’ h’0006’
apr0 h’0000’ h’0000’

���

BRM

Type of instruction:
Move instruction. Between register-memory.

Syntax:
brm am,sd, rS, (imm11|rX|), mD,aprD
brm am,sd, paS, (imm11|rX|), aprD
brm am,sd, saS, (imm11|rX|), mD,aprD
brm am,sd, (imm11|rX|), mS,aprS, rD

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
sd: 0 - 3
imm11: [0x000 – 0x7FF]
rX, rS, rD: r0 – r31
saS: sa0 – sa7
mS, mD: 0 – 3
paS, paD: pa0 – pa7
aprS, aprD: apr0 - apr7

Execution:
rS -> m(aprD), paS -> m(aprD), saS -> m(aprD), m(aprS) -> rD

Description:
Between memory and registers communications. It copies the data from the
source place to the destination place. Does not update any flags.

Example:
brm no,2 pa2, apr1

Operand Before After

pa2 h’0FF11’ h’0FF11’
m(apr1) h’0000’ h’FF11’

apr1 h’0011’ h’0011’

���

BRR

Type of instruction:
Move instruction. Between register-register.

Syntax:
brr rS, rD

Operands:
rS, rD: r0 – r31

Execution:
rS -> rD

Description:
Between registers communications. It copies the data from the source
register to the destination register. Does not update any flags.

Example:
brr r2, r31

Operand Before After

r2 h’1010’ h’1010’
r31 h’0000’ h’1010’

���

BUTFLY

Type of instruction:
DMAC instruction. An addition in the first serial data path and a subtraction
in the second one.

Syntax:
butfly ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
butfly ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 + S10 -> D0, S01 - S11 -> D1

Description:
The instruction returns the sum and subtract products, each in the
corresponding serial data path. The flags are updated.

Example:
butfly 0 pinc o1203 dm apr3, apr4

Operand Before After

apr3 h'0000' h'0001'
m(apr3)_1; m(apr3)_2 h’0005’; h'0001' h’0005’; h'0001'
m(apr3)_0; m(apr3)_3 h’0004’; h'FFFE' h’0004’; h'FFFE'
m(apr4)_2; m(apr4)_3 h’0000’; h'0000' h’0006’; h'0002'

���

CALL

Type of instruction:
P_FLOW instruction. A subroutine call.

Syntax:
call dest_address

Operands:
dest_address: [0x0000 – 0xFFFF]

Execution:
PC <- dest_address

Description:
A subroutine call instruction. It provides the absolute unconditional branch.

Example:
call sbr3

Operand Before After

PC h’0003’ h’3000’

���

CLA

Type of instruction:
Move instruction. Clear the accumulator register.

Syntax:
cla sd, paX
cla sd, saX

Operands:
sd: 0 - 3
paX: pa0 – pa7
saX: sa0 – sa7

Execution:
h’0000’ -> paX
h’0000’ -> saX

Description:
Clears the accumulator register, that is the serial in MAC0 (0), the serial in
MAC1 (1), the parallel ones (2) or the both serials (3), according to sd field.
Does not update any flags.

Example:
cla 1, sa4

Operand Before After

sd b‘10’ b‘10’
sa4 h’023139CD10’ h’0000000000’

���

CMPE

Type of instruction:
ALU instruction. Compare to zero, serial data path.

Syntax:
cmpe am, rS1, (rS2), rD
cmpe am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

Description:
The instruction returns one if two 16-bit s/u operands are equal, and zero
otherwise. The result is placed into the memory, or into the register,
selected by the addressing mode. The flags O and C are updated.

Example:
cmpe d, r6, r3

Operand Before After

r6 h'0002' h'0002'
r3 h'0000' h'0000'

���

DADD

Type of instruction:
DMAC instruction. Dual addition, both serial data paths.

Syntax:
dadd ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dadd ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 + S10 -> D0, S01 + S11 -> D1

Description:
The instruction returns two sums of 16-bit s/u operands, each from both
serial data paths. The results are placed into the register file, to the memory,
or to the accumulator register. The flags are updated.

Example:
dadd 1 r0, r1, r2, r3

Operand Before After

r0 h'0006' h'0006'
r1 h’11E1’ h’11E7’
r2 h’000C’ h’000C’
r3 h’FFFF’ h’000B’

���

DAND

Type of instruction:
DMAC instruction. Dual bitwise AND, both serial data paths.

Syntax:
dand ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dand ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 AND S10 -> D0, S01 AND S11 -> D1

Description:
The instruction returns two bitwise AND products between two 16-bit s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flags Z and N are updated.

Example:
dand 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’000000C001’

��	

DAVG

Type of instruction:
DMAC instruction. Dual average values, both serial data paths.

Syntax:
davg ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
davg ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 + S10)/2 -> D0, (S01 + S11)/2 -> D1

Description:
The instruction returns two average results from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags Z and N are updated.

Example:
davg 0 no o0321 dm apr3, apr1 (shown for one serial data path)

Operand Before After

m(apr3)_0 h’0002’ h’0002’
m(apr3)_3 h’000A’ h’000A’
m(apr1)_3 h’FFFE’ h’0006’

��(

DCMPE

Type of instruction:
DMAC instruction. Dual compare to zero, both serial data paths.

Syntax:
dcmpe ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dcmpe ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

Description:
The instruction returns two results which are one if the two 16-bit s/u
operands are equal, and zero otherwise. It processes in both serial data
paths and the results are placed into the register file, to the memory, or to
the accumulator. The flags O and C are updated.

Example:
dcmpe 1 r12, r3, r5, r6

Operand Before After

r12 h'11D3' h'11D3'
r3 h’0000’ h’0000’
r5 h’0005’ h’0005’
r6 h’0005’ h’0001’

���

DEC

Type of instruction:
ALU instruction. Decrement by 1, serial data path.

Syntax:
dec am, rS1, (rS2), rD
dec am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - 1 -> D

Description:
The instruction returns the decremented by one 16-bit s/u operand. The
result is placed into the memory, or into the register, defined by addressing
mode. The flags are updated.

Example:
dec i, 1,apr0, 1,apr1

Operand Before After

m(apr0)_1 h’0020’ h’0020’
m(apr1)_1 h’0001’ h’001F’

���

DMADD

Type of instruction:
DMAC instruction. Dual multiplication and addition, both serial data paths.

Syntax:
dmadd ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dmadd ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 * S10) + [ACC0] -> D0, (S01 * S11) + [ACC1] -> D1

Description:
The instruction returns two MAC results of 16x16-bit s/u i/f multiplication
product and 40-bit accumulator data from both serial data paths. The
results are placed into the register file, to the memory, or to the
accumulator register. The flags are updated.

Example:
dmadd 1 r0, r1, r2, r3, sa3 (shown for one serial data path)

Operand Before After

r0 h'0006' h'0006'
r1 h’FFFE’ h’FFFE’

sa3_0 h’000000000F’ h’0000000003’

���

DMAX

Type of instruction:
DMAC instruction. A maximum values, both serial data paths.

Syntax:
dmax ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dmax ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 - S10) -> D(S10) if D<0, D(S00) if D>=0
(S01 - S11) -> D(S11) if D<0, D(S01) if D>=0

Description:
The instruction returns two maximums from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags are updated.

Example:
dmax 1 r0, r1, r2, r3, sa0 (shown for one serial data path)

Operand Before After

r0 h'FFFF' h'FFFF'
r1 h’0002’ h’0002’

sa0_0 h’0000000000’ h’0000000002’

���

DMIN

Type of instruction:
DMAC instruction. A minimum values, both serial data paths.

Syntax:
dmin ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dmin ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 - S10) -> D(S00) if D<0, D(S10) if D>=0
(S01 - S11) -> D(S01) if D<0, D(S11) if D>=0

Description:
The instruction returns two minimums from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags are updated.

Example:
dmin 1 r0, r1, r2, r3, sa0 (shown for one serial data path)

Operand Before After

r2 h'FFFF' h'FFFF'
r3 h’0002’ h’0002’

sa0_1 h’0000000000’ h’FFFFFFFFFF’

���

DMSUB

Type of instruction:
DMAC instruction. Dual multiplication and subtraction, both serial data
paths.

Syntax:
dmsub ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dmsub ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 * S10) - [ACC0] -> D0, (S01 * S11) - [ACC1] -> D1

Description:
The instruction returns two multiply-subtract results of 16x16-bit s/u i/f
multiplication product and 40-bit accumulator data from both serial data
paths. The results are placed into the register file, to the memory, or to the
accumulator. The flags are updated.

Example:
dmsub 1 r0, r1, r2, r3, sa3

Operand Before After

r2 h'0006' h'0006'
r3 h’0002’ h’0002’

sa3_0 h’FFFFFFFFFE’ h’000000000E’

���

DMUL

Type of instruction:
DMAC instruction. Dual multiplication, both serial data paths.

Syntax:
dmul ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dmul ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 * S10 -> D0, S01 * S11 -> D1

Description:
The instruction returns two multiplication products of 16-bit s/u i/f
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator register. The flags are updated.

Example:
dmul 0 pmo o0321 da 4, apr3, sa5 (shown for one serial data path)

Operand Before After

m(apr3)_2 h’0005’ h’0005’
m(apr3)_1 h’0004’ h’0004’

apr3 h'000A' h'0006'
sa5_1 h'0000000000' h'00014'

���

DNAND

Type of instruction:
DMAC instruction. Dual bitwise NAND, both serial data paths.

Syntax:
dnand ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dnand ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 NAND S10 -> D0, S01 NAND S11 -> D1

Description:
The instruction returns two bitwise NAND products of two 16-bit s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flags Z and N are updated.

Example:
dnand 0 pinc o0123 da apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'0005'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000003FF7’

���

DNOR

Type of instruction:
DMAC instruction. Dual bitwise NOR, both serial data paths.

Syntax:
dnor ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dnor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 NOR S10 -> D0, S01 NOR S11 -> D1

Description:
The instruction returns two bitwise NOR products of two 16-bit s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flag Z and N are updated.

Example:
dnor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000000188’

��	

DOR

Type of instruction:
DMAC instruction. Dual bitwise OR, both serial data paths.

Syntax:
dor ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1FF]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 OR S10 -> D0, S01 OR S11 -> D1

Description:
The instruction returns two bitwise OR products of two 16-bit s/u operands
in both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags Z and N are updated.

Example:
dor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’000000FE77’

��(

DSHL

Type of instruction:
DMAC instruction. Dual bitwise logic left shift, both serial data paths.

Syntax:
dshl ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dshl ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 1xFF]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00*(2^S10|2^imm5) -> D, zero extension for LSB`s
S01*(2^S11|2^imm5) -> D, zero extension for LSB`s

Description:
The instruction returns two bitwise logic left shifted products. The length of
the shifts is defined by S10, S11, or imm5 data. The results are placed into
the register file, to the memory, or to the accumulator. The flags are
updated.

Example:
dshl 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’0000004FD0’; h’0000001188’

���

DSHRA

Type of instruction:
DMAC instruction. Dual bitwise arithmetic right, both serial data paths.

Syntax:
dshra ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dshra ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00/(2^S10|2^imm5) -> D, sign extension for MSB`s
S01/(2^S11|2^imm5) -> D, sign extension for MSB`s

Description:
The instruction returns two bitwise arithmetic right shifted products. The
length of the shifts is defined by S10, S11, or imm5 data. The results are
placed into the register file, to the memory, or to the accumulator. The flags
Z and N are updated.

Example:
dshra 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’00000004FD’; h’FFFFFFFC46’

���

DSHRL

Type of instruction:
DMAC instruction. Dual bitwise logic right shift, both serial data paths.

Syntax:
dshrl ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dshrl ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00/(2^S10|2^imm5) -> D, zero extension for MSB`s
S01/(2^S11|2^imm5) -> D, zero extension for MSB`s

Description:
The instruction returns two bitwise logic right shifted products. The length
of the shifts is defined by S10, S11, or imm5 data. The results are placed
into the register file, to the memory, or to the accumulator. The flags Z and
N are updated.

Example:
dshrl 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’00000004FD’; h’0000001C46’

���

DSUB

Type of instruction:
DMAC instruction. Dual subtraction, both serial data paths.

Syntax:
dsub ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dsub ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 - S10 -> D0, S01 - S11 -> D1

Description:
The instruction returns two subtraction products of 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator register. The flags are updated.

Example:
dsub 0 pinc o0321 da apr3, sa5 (shown for one serial data path)

Operand Before After

m(apr3)_2 h’0005’ h’0005’
m(apr3)_1 h’0004’ h’0004’

apr3 h'0FFF' h'1000'
sa5_1 h'0000000000' h'0000000001'

���

DXOR

Type of instruction:
DMAC instruction. Dual bitwise XOR, both serial data paths.

Syntax:
dxor ss am MAO d (imm5|rIND|), aprS, (aprD|saS/D)
dxor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 XOR S10 -> D0, S01 XOR S11 -> D1

Description:
The instruction returns two bitwise XOR products of two 16-bit s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flag Z and N are updated.

Example:
dxor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000003E76’

���

INC

Type of instruction:
ALU instruction. Increment by 1, serial data path.

Syntax:
inc am, rS1, (rS2), rD
inc am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 + 1 -> D

Description:
The instruction returns the incremented by one 16-bit s/u operand. The
result is placed into the memory or into the register, defined by addressing
mode. The flags are updated.

Example:
inc i, 1,apr0, 3,apr1

Operand Before After

m(apr0)_1 h’0020’ h’0020’
m(apr1)_3 h’FF00’ h’0021’

���

JC

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jc (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the carry flag is raised. Relative destination address is calculated.

Example:
jc a, 0x00FF

Operand Before After

PC h’0F12’ h’00FF’

���

JE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
je (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “equal to zero” condition is true. Relative destination address is
calculated.

Example:
je r, r20

Operand Before After

PC h’0012’ h’0011’

���

JGT

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jgt (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “greater then zero” condition is true. Relative destination address
is calculated.

Example:
jgt loop

Operand Before After

PC h’0003’ h’000A’

��	

JGTE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jgte (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “greater then or equal to zero” condition is true. Relative
destination address is calculated.

Example:
jgte r, r5

Operand Before After

PC h’7342’ h’0123’

��(

JLT

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jlt (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “less then zero” condition is true. Relative destination address is
calculated.

Example:
jlt a, 0x0211

Operand Before After

PC h’7342’ h’0211’

���

JLTE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jlte (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “less then or equal to zero” condition is true. Relative destination
address is calculated.

Example:
jlte main

Operand Before After

PC h’0012’ h’0011’

���

JMP

Type of instruction:
P_FLOW instruction. An unconditional branch.

Syntax:
jmp (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating PC.
Relative destination address is calculated.

Example:
jmp loop

Operand Before After

PC h’0003’ h’000A’

���

JNC

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jnc (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the carry flag is not raised. Relative destination address is calculated.

Example:
jnc count

Operand Before After

PC h’0342’ H’000B’

���

JNE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jne (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “not equal to zero” condition is true. Relative destination address
is calculated.

Example:
jne v

Operand Before After

PC h’0F12’ h’1111’

���

JNO

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jno (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the overflow flag is not raised. Relative destination address is
calculated.

Example:
jno loop2

Operand Before After

PC h’0342’ H’0002’

���

JO

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jo (a|r), dest

Operands:
a, r: 1
dest: (label | [0x0000 – 0xFFFF] | [r0 – r31])

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the overflow flag is raised. Relative destination address is calculated.

Example:
jo a, 0x00FF

Operand Before After

PC h’0F12’ h’00FF’

���

LD

Type of instruction:
MOVE instruction. Load data.

Syntax:
ld sd, imm16, rD
ld sd, imm16, aprD
ld sd, imm16, mD,aprD

Operands:
sd: 0 - 2
imm16: [0x0000 – 0xFFFF]
rD: r0 – r31
mD: 0 – 3
aprD: apr0 - apr7

Execution:
imm16 -> rD,
imm16 -> aprD,
imm16 -> m(aprD)

Description:
The instruction loads the 16-bit immediate data to the general purpose
register, to the address pointer register, or to the memory, selected by the
“sd” field. Does not update any flags.

Example:
ld 1, 0x0040, apr1

Operand Before After

imm16 h’0040’ h’0040’
apr1 h’0000’ h’0040’

���

MADD

Type of instruction:
MAC instruction. A Multiplication and addition, serial data path.

Syntax:
madd am, d, rS1, rS2, (rIND|imm5|), (rD|mD,aprD|saS/D)
madd am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|), (rD|mD,aprD|saS/D)

Operands:
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 – 0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
(S1 * S2) + [ACC] -> D(rX/saX/aprX)

Description:
The instruction returns the MAC value of the 16x16-bit s/u i/f
multiplication product and 40-bit accumulator register. The result is placed
into the register file, to the memory, or to the accumulator register, selected
by the “d” switch. The flags are updated.

Example:
madd d,pinc, 0,apr3, 1,apr3, sa1

Operand Before After

m(apr3)_0 h‘0004’ h’0004’
m(apr3)_1 h’0003’ h’0003’

sa1 h’0000000007’ h’0000000013’

��	

MAX

Type of instruction:
ALU instruction. A maximum value, serial data path.

Syntax:
max am, rS1, (rS2), rD
max am, mS1,aprS1, (mS2,aprS2), mD,aprD
max am, imm10, rS1/D
max am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D(S2) if result is less then zero
S1 - S2 -> D(S1) if result is greater or equal to zero

Description:
The instruction returns the maximum from two 16-bit s/u operands or one
16-bit operand and 10-bit immediate data. The result is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
max d, r1, r2, r3

Operand Before After

r1 h'0002' h'0002'
r2 h'0005' h'0005'
r3 h’0000’ h’0005’

��(

MIN

Type of instruction:
ALU instruction. A minimum value, serial data path.

Syntax:
min am, rS1, (rS2), rD
min am, mS1,aprS1, (mS2,aprS2), mD,aprD
min am, imm10, rS1/D
min am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D(S2) if result is less then zero
S1 - S2 -> D(S1) if result is greater or equal to zero

Description:
The instruction returns the minimum from two 16-bit s/u operands or one
16-bit operand and 10-bit immediate data. The result is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
min d, r1, r2, r3

Operand Before After

r1 h'0002' h'0002'
r2 h'0005' h'0005'
r3 h’0000’ h’0002’

���

MSUB

Type of instruction:
MAC instruction. A Multiplication and subtraction, serial data path.

Syntax:
msub am, d, rS1, rS2, (rIND|imm5|), (rD|mD,aprD|saS/D)
msub am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|), (rD|mD,aprD|saS/D)

Operands:
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 - 0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
(S1 * S2) – [ACC] -> D(rX/saX/aprX)

Description:
The instruction returns the subtracted value of the 16x16-bit s/u i/f
multiplication product and 40-bit accumulator register. The result is placed
into the accumulator register, selected by the “d” switch. The flags are
updated.

Example:
msub d,pinc, 0,apr3, 1,apr3, sa1

Operand Before After

m(apr3)_0 h‘0004’ h’0004’
m(apr3)_1 h’0003’ h’0003’

sa1 h’0000000007’ h’0000000005’

���

MUL

Type of instruction:
MAC instruction. A multiplication, serial data path.

Syntax:
mul am, d, rS1, rS2, (rIND|imm5|), (rD|mD,aprD|saS/D)
mul am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|), (rD|mD,aprD|saS/D)

Operands:
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 -0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
S1 * S2 -> D(rX/saX/aprX)

Description:
The instruction returns the multiplication product of two 16-bit s/u i/f
operands. The result is placed into the memory, into register file or in the
accumulator register, selected by the “d” switch. The flags are updated.

Example:
mul d,0, r1,r2, 2,apr3

Operand Before After

r1 h‘0008’ h’0008’
r2 h’000F’ h’000F’

m(apr3)_2 h’0000’ h’00F0’

���

NAND

Type of instruction:
ALU instruction Bitwise NAND, serial data path.

Syntax:
nand am, rS1, (rS2), rD
nand am, mS1,aprS1, (mS2,aprS2), mD,aprD
nand am, imm10, rS/D
nand am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NAND S2 -> D

Description:
The instruction returns the bitwise NAND product of two 16-bit s/u
operands or one 16-bit operand and 10-bit immediate data. The result is
placed into the memory, or into the register, selected by the addressing
mode. The flags Z and N are updated.

Example:
nand d, r5, r10, r0

Operand Before After

r5 h’F001’ h’F001’
r10 h’2001’ h’2001’
r0 h’0001’ h’DFFE’

���

NEG

Type of instruction:
ALU instruction. Negate value, serial data path.

Syntax:
neg am, rS1, (rS2), rD
neg am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 -> -S1

Description:
The instruction returns the negated 16-bit signed operand. The result is
placed into the memory or into the register, selected by the addressing
mode. Does not update any flags.

Example:
neg pinc, 1,apr4, 3,apr5

Operand Before After

apr4 h'0002' h'0003'
m(apr4)_1 h’0001’ h’0001’
m(apr5)_3 h'0000' h'FFFF'

���

NOP

Type of instruction:
MOVE instruction. No operation (do nothing)

Syntax:
nop

Operands:
Instruction has no any operands

Execution:
PC <- PC + 1

Description:
The instruction does nothing, except updating the PC. Does not update the
flags.

Example:
nop

Operand Before After

PC h’0001’ h’0002’

���

NOR

Type of instruction:
ALU instruction. Bitwise NOR, serial data path.

Syntax:
nor am, rS1, (rS2), rD
nor am, mS1,aprS1, (mS2,aprS2), mD,aprD
nor am, imm10, rS/D
nor am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NOR S2 -> D

Description:
The instruction returns the bitwise NOR product of two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
nor ii, 4, 2,apr2

Operand Before After

imm10 0x004 0x004
m(apr2)_2 h’0000’ h’FFFB’

���

NOT

Type of instruction:
ALU instruction. Bitwise NOT, serial data path.

Syntax:
not am, rS1, (rS2), rD
not am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NOT S2 -> D

Description:
The instruction returns the bitwise NOT product of the 16-bit s/u operand.
The result is placed into the memory, or into the register, selected by the
addressing mode. The flags Z and N are updated.

Example:
not i, 1,apr6, 2,apr0

Operand Before After

m(apr6)_1 h’F0F0’ h’F0F0’
m(apr0)_2 h’0000’ h’0F0F’

���

OR

Type of instruction:
ALU instruction. Bitwise OR, serial data path.

Syntax:
or am, rS1, (rS2), rD
or am, mS1,aprS1, (mS2,aprS2), mD,aprD
or am, imm10, rS/D
or am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 OR S2 -> D

Description:
The instruction returns the bitwise OR product of two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
or ii, 4, 2,apr2

Operand Before After

imm10 0x004 0x004
m(apr2)_2 h’0000’ h’0004’

��	

PADD

Type of instruction:
SIMD instruction. An addition, parallel data paths.

Syntax:
padd am ip MAO d aprS, (aprD|paS/paD)
padd am ip MAO d imm5, aprS, (aprD|paS/paD)
padd am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) + S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the sum of two 8/16-bit s/u operands. The result is
placed into the memory or into the accumulator register, selected by the
“d” switch. The flags are updated.

Example:
padd pinc sp o0231 da apr0, pa3 (shown for one parallel data path)

Operand Before After

apr0 h‘0000’ h’0001’
m(apr0)_2 h’0110’ h’0110’

pa3_2 h’00000’ h’00011’

��(

PAND

Type of instruction:
SIMD instruction. Bitwise AND, parallel data paths.

Syntax:
pand am ip MAO d aprS, (aprD|paS/paD)
pand am ip MAO d imm5, aprS, (aprD|paS/paD)
pand am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) AND S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the bitwise AND product of two 8/16-bit operands.
The result is placed into the memory or in the accumulator register, selected
by the “d” switch. The flags Z and N are updated.

Example:
pand pinc sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0000’ h’0001’
m(apr1)_0 h‘AE46’ h’AE46’

pa0_0 h’00000’ h’00006’

���

PAVG

Type of instruction:
SIMD instruction. Average value, parallel data paths.

Syntax:
pavg am ip MAO d aprS, (aprD|paS/paD)
pavg am ip MAO d imm5, aprS, (aprD|paS/paD)
pavg am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
[S1(aprS) + S2(aprS)]/2 -> D(aprD/paD)

Description:
The instruction returns the average result from two 8/16-bit s/u operands.
The result is placed into the memory or in the accumulator register, selected
by the “d” switch. The flags Z and N are updated.

Example:
pavg pdec dp o1223 dm apr0, apr7

Operand Before After

apr0 h‘0111’ h’0110’
m(apr0)_0; m(apr0)_1; m(apr0)_2 h‘000A’ : h'000B' : h'000C' h‘000A’ : h'000B' : h'000C'

m(apr7)_0; m(apr7)_1 h’0000’ : h'0000' h’000B’ : h'000C'

���

PCMPE

Type of instruction:
SIMD instruction. Compare to zero, parallel data paths.

Syntax:
pcmpe am ip MAO d aprS, (aprD|paS/paD)
pcmpe am ip MAO d imm5, aprS, (aprD|paS/paD)
pcmpe am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

Description:
The instruction returns one if two 8/16-bit s/u operands are equal, and
zero otherwise. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags O and C are updated.

Example:
pcmpe pinc dp o2211 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0001’ h’0002’
m(apr1)_1 h‘0000’ h’0000’
m(apr1)_2 h‘0000’ h’0000’

pa0_2 h’00000’ h’00001’

���

PDOT

Type of instruction:
SIMD instruction. DOT multiplication product, parallel data paths.

Syntax:
pdot am ip MAO d aprS, (aprD|paS/paD)
pdot am ip MAO d imm5, aprS, (aprD|paS/paD)
pdot am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
|a * b| + |c * d| + |e * f| + |g * h| -> D(aprX|paX)

Description:
the instruction returns the DOT multiplication product from up to eight 8-
bit s/u operands. The result is placed into the memory or in the
accumulator register, selected by “d” switch. The flags are updated.

Example:
pdot no sp o0123 da apr4, pa3

Operand Before After

apr4 h‘0001’ h’0001’
m(apr4) h'0804' : h’0201’ : h'0C15' : h’1001’ h'0804' : h’0201’ : h'0C15' : h’1001’
pa3_3 h’00000’ h’00122’

���

PMAX

Type of instruction:
SIMD instruction. A maximum value, parallel data paths.

Syntax:
pmax am ip MAO d aprS, (aprD|paS/paD)
pmax am ip MAO d imm5, aprS, (aprD|paS/paD)
pmax am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(S2) if result is less then zero
S1(aprS) - S2(aprS) -> D(S1) if result is greater or equal to zero

Description:
The instruction returns the maximum operand from two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by “d” switch. The flags are updated.

Example:
pmax no sp o0123 dm apr1, apr3 (shown for one parallel data path)

Operand Before After

m(apr1)_1 h‘0405’ h’0405’
m(apr3)_1 h’0000’ h’0005’

���

PMIN

Type of instruction:
SIMD instruction. A minimum value, parallel data paths.

Syntax:
pmin am ip MAO d aprS, (aprD|paS/paD)
pmin am ip MAO d imm5, aprS, (aprD|paS/paD)
pmin am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(S1) if result is less then zero
S1(aprS) - S2(aprS) -> D(S2) if result is greater or equal to zero

Description:
The instruction returns the minimum operand from two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags are updated.

Example:
pmin no sp o0123 dm apr1, apr3 (shown for one parallel data path)

Operand Before After

m(apr1) h‘0405’ h’0405’
m(apr3) h’0000’ h’0004’

���

PMUL

Type of instruction:
SIMD instruction. A Multiplication, parallel data paths.

Syntax:
pmul am ip MAO d aprS, (aprD|paS/paD)
pmul am ip MAO d imm5, aprS, (aprD|paS/paD)
pmul am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) * S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the multiplication result of two 8/16-bit s/u i/f
operands. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags are updated.

Example:
pmul no sp o0231 da apr4, pa3 (shown for one parallel data path)

Operand Before After

apr4 h‘0001’ h’0001’
m(apr4)_3 h’0201’ h’0201’

pa3_3 h’00000’ h’00002’

���

PNAND

Type of instruction:
SIMD instruction. Bitwise NAND, parallel data paths.

Syntax:
pnand am ip MAO d aprS, (aprD|paS/paD)
pnand am ip MAO d imm5, aprS, (aprD|paS/paD)
pnand am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) NAND S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the bitwise NAND product of two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by “d” switch. The flags Z and N are updated.

Example:
pnand pinc sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0000’ h’0001’
m(apr1)_1 h‘AE46’ h’AE46’

pa0_1 h’00000’ h’FFFF9’

���

PNOR

Type of instruction:
SIMD instruction. Bitwise NOR, parallel data paths.

Syntax:
pnor am ip MAO d aprS, (aprD|paS/paD)
pnor am ip MAO d imm5, aprS, (aprD|paS/paD)
pnor am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) NOR S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the bitwise NOR product of two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by switch. The flags Z and N are updated.

Example:
pnor pdec sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’001F’
m(apr1)_0 h‘AE46’ h’AE46’

pa0_0 h’00000’ h’00011’

��	

POR

Type of instruction:
SIMD instruction. Bitwise OR, parallel data paths.

Syntax:
por am ip MAO d aprS, (aprD|paS/paD)
por am ip MAO d imm5, aprS, (aprD|paS/paD)
por am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) OR S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the bitwise OR product of two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags Z and N are updated.

Example:
por pdec sp o0123 da apr1, pa0�(shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’001F’
m(apr1)_2 h‘AE46’ h’AE46’

pa0_2 h’00000’ h’FFFEE’

�	(

PSAD

Type of instruction:
SIMD instruction. Sum of Absolute Differences, parallel data paths.

Syntax:
psad am ip MAO d aprS, (aprD|paS/paD)
psad am ip MAO d imm5, aprS, (aprD|paS/paD)
psad am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
|a-b|+|c-d|+|e-f|+|g-h| -> D(aprX|paX)

Description:
The instruction returns the sum of the absolute differences from up to eight
8-bit s/u operands. The result is placed into the memory or in the
accumulator register, selected by the “d” switch. The flags are updated.

Example:
psad pinc sp o0231 dm apr4, apr3

Operand Before After

apr4 h‘0001’ h’0002’
m(apr4) h'0804' : h’0C15’ : h'0201' : h’0201’ h'0804' : h’0C15’ : h'0201' : h’0201’

m(apr3)_2 h’00000’ h’FFFFE’

�	�

PSHL

Type of instruction:
SIMD instruction. Bitwise logic left shift, parallel data paths.

Syntax:
pshl am ip MAO d aprS, (aprD|paS/paD)
pshl am ip MAO d imm5, aprS, (aprD|paS/paD)
pshl am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 – 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1*(2^(S2|imm5)) -> D, zero extension for LSB`s

Description:
The instruction returns the bitwise logic left shifted product. The shift
length is defined by S2 or imm5 data. The result is placed into the memory
or in the accumulator register, selected by the “d” switch. The flags are
updated.

Example:
pshl no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘350F’ h’350F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'A878'

�	�

PSHRA

Type of instruction:
SIMD instruction. Bitwise arithmetic right shift, parallel data paths.

Syntax:
pshra am ip MAO d aprS, (aprD|paS/paD)
pshra am ip MAO d imm5, aprS, (aprD|paS/paD)
pshra am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 – 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1/(2^(S2|imm5)) -> D, sign extension for MSB`s

Description:
The instruction returns the bitwise arithmetic right shifted product. The
shift length is defined by S2 or imm5 data. The result is placed into the
memory or in the accumulator register, selected by the “d” switch. The flags
Z and N are updated.

Example:
pshra no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘350F’ h’350F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'06A1'

�	�

PSHRL

Type of instruction:
SIMD instruction. Bitwise logic right shift, parallel data path.

Syntax:
pshrl am ip MAO d aprS, (aprD|paS/paD)
pshrl am ip MAO d imm5, aprS, (aprD|paS/paD)
pshrl am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1/(2^(S2|imm5)) -> D, zero extension for MSB`s

Description:
The instruction returns the bitwise logic right shifted product. The shift
length is defined by S2 or imm5 data. The result is placed into the memory
or in the accumulator register, selected by the “d” switch. The flags Z and N
are updated.

Example:
pshrl no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘B50F’ h’B50F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'F6A1'

�	�

PSUB

Type of instruction:
SIMD instruction. A subtraction, parallel data paths.

Syntax:
psub am ip MAO d aprS, (aprD|paS/paD)
psub am ip MAO d imm5, aprS, (aprD|paS/paD)
psub am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the subtraction of two 8/16-bit s/u operands. The
result is placed into the memory or in the accumulator register, selected by
the “d” switch. The flags are updated.

Example:
psub no sp o0231 da apr0, pa3 (shown for one parallel data path)

Operand Before After

apr0 h‘0001’ h’0001’
m(apr0)_0 h’0110’ h’0110’

pa3_0 h’00000’ h’FFFF1’

�	�

PXOR

Type of instruction:
SIMD instruction. Bitwise XOR, parallel data paths.

Syntax:
pxor am ip MAO d aprS, (aprD|paS/paD)
pxor am ip MAO d imm5, aprS, (aprD|paS/paD)
pxor am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands:
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) XOR S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the bitwise XOR product of two 8/16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags Z and N are updated.

Example:
pxor ppo sp o0123 dm 6, apr1, apr0 (shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’0026’
m(apr1)_1 h‘AE46’ h’AE46’
m(apr0)_1 h’00000’ h’FFFE8’

�	�

SHL

Type of instruction:
ALU instruction. Bitwise logic left shift, serial data path.

Syntax:
shl am, rS1, (rS2), rD
shl am, mS1,aprS1, (mS2,aprS2), mD,aprD
shl am, imm10, rS1/D
shl am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1*(2^(S2|imm10)) -> D, zero extension for LSB`s

Description:
The instruction returns the bitwise logic left shifted product. The length of
the shift is defined by S2 or by imm10 data. The result is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
shl ii, 2, 0,apr5

Operand Before After

imm10 0x002' 0x002
m(apr5)_0 h'C021' h'0084'

�	�

SHRA

Type of instruction:
ALU instruction. Bitwise arithmetic right shift, serial data path.

Syntax:
shra am, rS1, (rS2), rD
shra am, mS1,aprS1, (mS2,aprS2), mD,aprD
shra am, imm10, rS1/D
shra am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1/(2^(S2|imm10)) -> D, sign extension for MSB`s

Description:
The instruction returns the bitwise arithmetic right shifted product. The
length of the shift is defined by S2 or by imm10 data. The result is placed
into the memory or into the register, selected by the addressing mode. The
flags Z and N are updated.

Example:
shra di, 2, r5

Operand Before After

imm10 0x002 0x002
r5 h'C021' h'F008'

�	�

SHRL

Type of instruction:
ALU instruction. Bitwise logic right shift, serial data path.

Syntax:
shrl am, rS1, (rS2), rD
shrl am, mS1,aprS1, (mS2,aprS2), mD,aprD
shrl am, imm10, rS1/D
shrl am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1/(2^(S2|imm10)) -> D, zero extension for most significant bits

Description:
The instruction returns the bitwise logic right shifted product. The length of
the shift is defined by S2 or by imm10 data. The result is placed into the
memory or into the register, selected by addressing mode. The flags Z and N
are updated.

Example:
shrl di, 2, r5

Operand Before After

imm10 0x002 0x002
r5 h'C021' h'3008'

�		

SUB

Type of instruction:
ALU instruction. A Subtraction, serial data path.

Syntax:
sub am, rS1, (rS2), rD
sub am, mS1,aprS1, (mS2,aprS2), mD,aprD
sub am, imm10, rS1/D
sub am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D

Description:
The instruction returns the subtracted result from two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory or into the register, selected by the addressing mode. The flags
are updated.

Example:
sub di, 19, r3

Operand Before After

imm10 0x013 0x013
r3 h’0020’ h’FFF3’

�((

SUBABS

Type of instruction:
ALU instruction. A subtraction of absolute values, serial data path.

Syntax:
subabs am, rS1, (rS2), rD
subabs am, mS1,aprS1, (mS2,aprS2), mD,aprD
sub am, imm10, rS1/D
sub am, imm10, mS1/D,aprS1/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1) – abs(S2) -> D

Description:
The instruction returns the subtraction of two absolute 16-bit signed
values. The result is placed into the memory or into the register, selected by
the addressing mode. The flags are updated.

Example:
subabs d, r6, r0, r15

Operand Before After

r6 h’000F’ h’000F’
r0 h'FFFE' h'FFFE'
r15 h'0000' h'000D'

�(�

SWP

Type of instruction:
MOVE instruction. Swap data between registers

Syntax:
swp rS, rD

Operands:
rS, rD: r0 – r31

Execution:
rS -> rD, rD -> rS

Description:
Swap data between registers. Does not update the flags.

Example:
swp r2, r31

Operand Before After

r2 h’1010’ h’0000’
r31 h’0000’ h’1010’

�(�

RPT

Type of instruction:
P_FLOW instruction. Hardware loop instruction.

Syntax:
rpt #instr, #cycles

Operands:
#instr: [0x01 - 0xFF]
#cycles: [0x0001 – 0xFFFF]

Execution:
Execution example: loop last 15 instructions 63 times

Description:
This instruction launches hardware loops of #instr previous instructions
#cycles times, according to the PC.

Example:
rpt 15, 63

�(�

RTS

Type of instruction:
P_FLOW instruction. Return from subroutine.

Syntax:
rts

Operands:
Instruction takes no operands

Execution:
PC <- PC-stack

Description:
This instruction jumps back from the subroutine and restores the PC values.

Example:
rts

Operand Before After

PC-stack h'0023' h'0023'
PC h’1F23’ h’0023’

�(�

XOR

Type of instruction:
ALU instruction. Bitwise XOR, serial data path.

Syntax:
xor am, rS1, (rS2), rD
xor am, mS1,aprS1, (mS2,aprS2), mD,aprD
xor am, imm10, rS/D
xor am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 XOR S2 -> D

Description:
The instruction returns the bitwise XOR product of two 16-bit s/u
operands. The result is placed into the memory or in the accumulator
register, selected by the addressing mode. The flags Z and N are updated.

Example:
xor i, 0,apr0, 2,apr2, 0,apr0

Operand Before After

m(apr0)_0 h’01E7’ h’FE18’
m(apr2)_2 h’FFFF’ h’FFFF’

�(�

�(�

Bibliography

[1] Eric Tell. A Domain Specific DSP Processor, LiTH-ISY-EX-3209,
Linköping University, 2001

[2] Dake Liu. Design of Embedded DSP Processors, Department of Electrical
Engineering, Linköping University, 2003

[3] Buyer's Guide to DSP Processors. Berkeley Design Technology Inc., 2001
edition

[4] Dake Liu. Introduction to embedded DSP processor design. TSEA80
(TSEK15) course lectures, Unit1-13, 2002

[5] Anthony A. Aaby. Compiler construction using Flex and Bison, Walla
Walla College, 2003.

[6] John R. Levine, Tony Mason, Doug Brown. Lex & Yacc, 2-nd/updated
edition, O'Reilly & Associates, 1992

[7] William Stallings. Computer Organization & Architecture. Design for
Performance, sixth edition, Prentice Hall, 2003

�(�

�(�

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en
längre tid från publiceringsdatum under förutsättning att inga extra-ordinära
omständigheter uppstår.
Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut
enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell
forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan
inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens
medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar
av teknisk och administrativ art.
Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den
omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt
skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant
sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende
eller egenart.
För ytterligare information om Linköping University Electronic Press se förlagets hemsida
http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible replacement
- for a considerable time from the date of publication barring exceptional circumstances.
The online availability of the document implies a permanent permission for anyone to read,
to download, to print out single copies for your own use and to use it unchanged for any
non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional on the
consent of the copyright owner. The publisher has taken technical and administrative
measures to assure authenticity, security and accessibility.
According to intellectual property law the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.
For additional information about the Linköping University Electronic Press and its
procedures for publication and for assurance of document integrity, please refer to its
WWW home page: http://www.ep.liu.se/

© Vladimir Gnatyuk & Christian Runesson, 2004

