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Abstract

This Master Thesis presents the design of the core of a fixed point general
purpose  multimedia  DSP  processor  (MDSP)  and  its  instruction  set.  This
processor  employs  parallel  processing  techniques  and  specialized
addressing models to speed up the processing of multimedia applications.

The MDSP has a dual MAC structure with one enhanced MAC that provides a
SIMD, Single Instruction Multiple Data, unit consisting of four parallel data
paths that are optimized for accelerating multimedia applications. The SIMD
unit performs four multimedia-oriented 16-bit operations every clock cycle.
This  accelerates  computationally  intensive  procedures  such as  video and
audio decoding. The MDSP uses a memory bank of four memories to provide
multiple accesses of source data each clock cycle.
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1
Introduction

1.1 Why DSP?

Digital Signal Processing (DSP) has recently become an available technology
in  many areas.  Many products  that  were historically  based on analog or
micro-controller systems are now being migrated to DSP microprocessor-
based systems. Today, almost all new system designs are DSP-based and the
number of DSP-based systems are increasing rapidly. Almost every digital
system could be referred to as being DSP-based, but we will refer only to
those systems which provide mathematical and media algorithms as their
kernel  operations.  They  consist  of  digital  filters  algorithms,  sound  and
image processing algorithms, coding, statistic and coherence processing. 

The increasing usage of computer system for communications and mobile
phones for people's relations have made this industrial area as a one of the
greatest  in terms of  growth.  Since the first  commercially  successful  DSP
processor in the 1980,  the dozens and different types of DSP processors
have dramatically increased [3]. The brief view on the market forecasts give
us the constant growth of DSP processors in the total amount of sold chips.
From $4.6B in 2001 up to $14B in 2005 for user programmable DSP chips
[4]. The percentage of global sales of DSP processors and micro controllers
(MCU) is more then 90% of all processors sold in 2002 [2].

This  forecast  is  reasonable  because  the  DSP  solutions  enjoy  several
advantages over  the analog signal processing (ASP)  ones.  The number of
applications could be processed only by DSP or could be implemented in an
inefficient and more expensive way via ASP. This fact is of course one of the
most  significant.  For  instance,  applications  like  speech  synthesis  and
recognition and high-speed data communications are well suitable for DSP.
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The predictable behavior, re-programmability and the sizes of the systems
are also very important and they do all benefit from using DSP.

1.2 DSP processors

A DSP processor is a processor that performs one or several DSP algorithms.
They  were  designed  to  perform  mathematical  algorithms  in  real  time
domain. This is a main reason for the DSP processors development. 

A DSP processor is, because of the nature of DSP algorithms, a processor
mainly  oriented  on  multiply-accumulate  operations.  The  number  of
operations in DSP are similar to each other and this gives the opportunity to
provide efficient parallelization of the calculations. Next beneficial feature
of a DSP processor is the multiple-access memory architecture to improve
processing. There are several ways to organize the support for simultaneous
accesses to multiple memory locations. It can be done with the use of multi-
ported memories, multiple buses and multiple independent memories in a
memory bank. Next significant and often used feature for speeding up the
data processing is to use one or more dedicated address generation units
and,  usually,  with  special  addressing models.  This feature gives multiple
address  calculations  at  the same instruction cycle.  Some special  address
models are designed exclusively for speeding up certain DSP algorithms.

There are  two big categories of DSP processors that are dominating,  the
general purpose DSP processors and the Application Specific Instruction set
Processor  (ASIP).  They  also  could  be  specified  by  the  used  algorithms,
sample  rate,  clock  rate  and  arithmetic  types.  A  general  purpose  DSP
processor  gives  enough  flexibility,  design  environment  support,  and
application references.  For some reasons like critical requirements on the
silicon  area,  power  consumption,  performance  and  especially  when  a
System-on-Chip (Soc)  solution is  required,  we  need  to  use  an ASIP  DSP
processor instead of general purpose DSP processor [2]. 
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1.3 Multimedia processor

A  Multimedia  Processor  is  an  application  specific  DSP  processor  which
performs a number of multimedia algorithms. The following classes of DSP
algorithms might be referred to as multimedia types:
� Speech coding and decoding
� Speech recognition
� Speech identification
� High-fidelity audio encoding and decoding
� Modem algorithms
� Audio mixing and editing
� Voice synthesis
� Image compression and decompression
� Image compositing

A  general  purpose  Multimedia  DSP  (MDSP)  processor  should,  of  course,
cover all of the above. Naturally, no processor can meet the needs of all or
even the most of the applications, and that is why it's a designer's task to
find the optimal  trade-off  between functional  covering and performance,
cost, integration, power consumption, and other factors.

1.4 About this thesis

The purpose of this project was to design a programmable Multimedia DSP
processor, according to the given specification, for the Division of Computer
Engineering, Department of Electrical Engineering at Linköping University,
Sweden. This work started at the processor research step, with analysis of a
given specification, and stopped at the benchmarking design step because of
the  lack  of  time  in  this  20  weeks  of  length  job.  The  architecture,  the
instruction set and the coding solutions have been designed as flexible as
possible for future improvements and corrections. 

This introductory chapter explains what a DSP is, why the vendors are using
it and also gives the main definitions and observations. Chapter 2 describes
how the  DSP  processor  should  be  designed.  It  introduces  the  processor
design flow chart  and gives a  brief  description for each step.  Chapter 3
presents  the  detailed  description  of  the  Architecture  Design  step,  all
research  issues  and  the  designers  features  for  optimal  specification
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implementation  are  specified  here.  The  address  generation  strategy  and
existing  addressing  models  are  described  in  Chapter  4.  The  designed
Instruction Set is presented in Chapter 5. Chapter 6 describes the assembler
design and Chapter 7 shows the simulator design. The Benchmarking design
step is described in Chapter 8. Finally we will analyze the results and will
give our conclusions in Chapter 9.

Appendix A.1 shows the Serial Data Path architecture. 
Appendix A.2 shows four Parallel Data Paths architecture.
Appendix B.1 contains the guide to the instruction set.
Appendix  B.2  has  a  complete  description  of  all  instructions  for  this
processor.
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2
Processor Design Flow

2.1 Preview

This chapter gives an overview of the design flow of any DSP processor, as
well  as  some  certain  explanations  especially  for  the  designed  one.  The
schematic of the design flow is shown in figure 2.1:

Figure 2.1: The DSP processor design flow
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2.2 Specification Analysis

The design analysis  have started from reading and understanding of the
given specification. The following issues have been researched:
� Flexibility of supported operations
� Number of computing resources
� Memory capacity
� Flexible and multiple memory accesses
� Parallelism of the architecture
� Low power design
� Opportunities for future accelerations

2.3 Instruction Set Design and Architecture Planning

During this design step the designers should decide what data types and
what instructions that should be used in the processor. It mainly depends
on what tasks and operations the future processor is designed for. At this
design step the instruction types and formats should also be defined and
fixed.  All  these  activities  should  be  provided  within  the  processor
architecture planning at a top level. 

Instruction format strongly depends on the architecture topology, number
of processing units, memory banks, interconnections and relations between
them.  In  addition,  the  designers  should  always  match  the  possibility  of
implementing each instruction according to the available hardware.  After
this step the, top-level processor architecture and the detailed instruction
set are defined. These activities are described in chapters 3, 4 and 5.

2.4 Instruction Set Simulator

The instruction set simulator is a behavioral model of the processor that is
written  in  some high-level  language  [1].  It  needs to  check  the  designed
instruction set from the functional point of view. Each instruction should be
implemented and verified. In conjunction with the benchmarking step, the
simulator  should  give  the  answer  if  the  designed  instruction  set  and
temporal architecture covers the processor's performance requirements or
not. 
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The behavioral model of the processor consists of two parts, the assembler
program and the instruction set simulator. The assembler firstly translates
the  lexical  code  (assembly  program)  to  a  suitable  form  for  the  existed
hardware  as  hexadecimal  code.  In  reality  this  hexadecimal  code  should
generate the control signals to provide all necessary computations in the
data path. The instruction set simulator is virtually responsible for this.

A detailed description of the assembler design is given in chapters 6 and the
instruction set simulator design is given in chapter 7.

2.5 Benchmarking

Now, when the instruction set simulator is ready, it is time to write the real
code for the future processor and pass it through the processor. Usually the
most popular or most significant applications for this processor are used to
compare the results with vendors or maybe with some other related works.

This  step  verifies  the  designed  instruction  set,  if  it  offers  sufficient
performance  to  fulfill  the  requirements,  that  were  set  up  during
specification analysis  and architecture  planning.  If  it  does  we could  talk
about the release of the instruction set. If it does not, we have to go back to
the instruction set design level and modify it. Please refer to chapter 8 for
details.

2.6 Architecture Design

This step is a real hardware implementation, using the top-down approach.
All  computational  units,  buses,  control  blocks,  other  elementary  and
auxiliary  units  are  defined  at  the  register-transfer  level.  All  blocks,
processing elements and data chains must follow the hardware limitations
and instruction set requirements.

��



2.7 RTL Design

A modern implementation method is to use one of the hardware descriptor
languages (HDL). The most usable languages are VHDL and Verilog. These
languages let the programmer write synthesizeable code. It might be very
useful for testing prototypes.

2.8 Verification 

Verification is a very important and a very time consuming design step. It
can consume up to 80% of the complete design time for some systems. This
step is  the  designers  final  one  before manufacturing.  The  verification is
divided  into  the  functional  and  the  physical  verification.  The  first  one
verifies the logical correctness of the HDL code, the second one handles the
physical parameters, for example time constrains [2]. If there were no errors
during  the  verification  process,  the  RTL  implementation  version  of  the
processor is released.  Otherwise we have to modify the RTL code or for
some reasons even change the architecture. See the design flow diagram in
figure 2.1.

Because of the time deficit and the specific type of this 20 weeks length job,
the architecture  of  the processor  unfortunately  have  not  been fixed and
implemented yet.
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3
Architecture Design

3.1 Preview

A DSP processor can be divided into its processor core and its peripherals.
In this job we have concentrated on the processor core design. The core
might be divided later into the data path, the control path, the memory, the
buses, and the flags. 

This  chapter  describes  the  architecture  issues,  the  design  decisions  and
their reasonings. It also gives the overall design conception and a detailed
research process.

3.2 Research for Media Applications

According to the design specification we have designed a multimedia DSP
processor (MDSP). This is a DSP processor that has special architecture and
hardware  features  to  accelerate  the  media  applications.  The data have  a
fixed-point  representation.  The  general  structure  of  the  processor  is  a
Harvard's one, with different memories for programs and for data.

There are several architectural DSP features. Most of the DSP applications
require  high  performance  in  repetitive  computation  and  data  intensive
tasks. The research is aimed for designing of an efficient architecture, for
the general purpose multimedia processor, and is concentrated on:

1) Fast Multiply-Accumulate (MAC) operations (the most DSP algorithms,  
including filtering and transforms, are multiplication-intensive).

2) Multiple memory access architecture (this property might be very 
efficient in cases where the operations could be accelerated by reading 
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multiple data items at the same instruction cycle).
3) Specialized address models (efficient data managing and special  data  

types in the DSP applications).

The designers should not forget about an efficient Control Path and of the
input/output organization. In this work we did not concentrate on them.

Let us look closer at these issues. The most often-used DSP algorithms, such
as digital filters and Fourier transforms, need the ability to perform a MAC
operation in one instruction cycle. The processor must have a good enough
hardware  to  perform  it,  in  other  words  at  least  one  MAC  unit.  For
acceleration  of  these  media  applications  a  processor  could  have  several
computational  blocks.  They  are  integrated  into  the  main  arithmetic
processing  unit,  also  called  the  data  path.  According  to  the  functional
coverage, the processor should be flexible enough to support voice, audio,
moving  picture  decoding  and  still  picture  encoding/decoding.  The  extra
computing  resources  and memory  capacities  should be  available  for  the
future applications while the job is running.

We have stopped at the dual MAC (DMAC) architecture. The top-level data-
path  architecture  is  shown in  figure  3.1.  First,  each  MAC had  the  same
structure. It operates with data from the memory and from the Register File.
The data length is 16 bits and the same applies to the memory.

Figure 3.1: A top-level Data Path architecture

��



Because the media data have an 8-bit data length representation, the further
research was aimed at the 8-bit operations acceleration. The most common
media tasks as motion estimation and motion compensation require 8-bit
additions and multiplications. This was the main reason for our architecture
improvement,  the  extended  MAC0  structure.  The  extra  computational
hardware has been added to employ parallel processing techniques such as
single instruction multiple data (SIMD). 

Four  additional  MAC  units  have  been  integrated  into  MAC0  for  parallel
computations. At this moment, six computational paths exist. Four parallel
data paths, specialized for media applications, and two serial data paths, see
figure 3.2:
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Each parallel data path provides eight-by-eight bit multiplication and then
provides a 20-bit accumulation. The hardware structure of the parallel and
the serial data paths are the same (see Appendix A.1). The only difference is
the computational bit length and the extra hardware for performing special

��

Figure 3.2: The six data paths MDSP structure



instructions like PSAD and PDOT. Chapter 5 gives a detailed description of
these instructions. Each parallel data path has a final 20-bit result and each
serial  data path has a 40-bit  result.  These bit  lengths have been got  by
adding the guard bits to a native length result to prevent overflow errors
during the hardware loops.  For the large loops,  and according to general
purpose preference of this MDSP processor, we found that  four guard bits
for the final result in the parallel data paths, and eight guard bits for the
serial ones are enough.

In order to speed up media applications, we divided the memory bank into
four memories. This gives us the ability to read up to four different data at
the same instruction cycle and of course to write them back. A theoretical
speed up of  up to  four  times  can be  achieved  for  long loop tasks.  The
memory access strategy is as follows:

� All data paths can read data from any memory
� The serial data path can write data to any memory in the memory bank

while  the  parallel  data  paths  only  can  write  to  its  own  memory.  For
instance P_dp0  writes to memory0 (M0)

All wires are of 16-bit width, the native processor length. In case of parallel
computations, when the SIMD mode is enabled, data can be represented in
two ways:

1) As two 8-bit operands in one 16-bit address space to provide eight by 
eight operations. 

2) As one 16-bit operand in each memory address space.

In conclusion, this processor may:
� Process 8-bit media data in SIMD mode
� Process 16-bit data in single and Dual MAC modes
� Provide mixed usage of both of the above modes (DMAC) for as much

processing acceleration as possible
� Provide  any memory access order in SIMD and DMAC modes using the

special address calculation techniques, that are described in chapter 4. 
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3.3 Data Path Organization

The data path of the designed MDSP consists of two serial data paths and
four parallel data paths. The Register file and the memory structure are also
described in this sub-chapter.

3.3.1 Serial Data Path

Appendix A.1 shows the detailed serial data path architecture.  The serial
data path was designed according to the current instruction set in order to
provide all the arithmetic, logic, and shift instructions. The serial data path
represents  a  MAC  structure  so  it's  also  possible  to  provide  sixteen-by-
sixteen multiplications and then provide one or several arithmetic, logic or
shift  operations.  According  to  the  instruction  word,  data  can  also  be
bypassed through the multiplication chain and reach the arithmetic,  logic
and shift part of the data path.

The serial data path was designed according to the co-designed instruction
set. The instruction set consists of six types of instructions: 
� MOVE instructions
� ALU instructions
� MAC instructions
� DMAC instructions
� SIMD instructions
� P_FLOW instructions

Please refer to chapter 5 for a detailed description of the instruction set.

From the computational point of view, only ALU, MAC and DMAC types of
instructions can be used in the serial data path. 

The architecture supports the ability to provide three ALU operations per
one instruction word as one arithmetic, one logic and one shift instruction.
In other words it can provide:
� arithmetic + logic + shift operations
� arithmetic operation only
� logic operation only
� shift operation only
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� any combination of arithmetic, logic and shift operations one time each,
and exactly in this strong order of execution. This processor can execute
only  the  arithmetic  then  the  logic  and  then  the  shift  operation.  This
limitation of the executional order is not so ineffective because up to 80%
of all the cases, this exact order is the one that is needed. We applied this
trade-off in our design. This statistic percent number we have got from
the previous research activities.

All possible arithmetic, logic and shift operations are listed and described in
chapter 5.

The MAC and DMAC instructions are also passing through the serial data
path, but in this case the multiplication access chain is always enabled by
the corresponding control signals. 

3.3.2 Parallel Data Path

The organization of the parallel data path (see Appendix A.2) is absolutely
the same as for the serial data path except for some architecture features: 
� Parallel data paths can operate with 8-bit data, providing eight-by-eight

multiplications, and then accumulate the 20-bit result 
� Parallel data paths operates only with the SIMD instructions
� Parallel data paths processes the data only from the memory bank
� The operands in the parallel data paths are taken from the same memory

address  line  or,  if  the  individual  offset  is  defined,  from the  different
addresses  which  have  been  shifted  according  to  this  offset.  A  more
detailed description of the individual offset addressing is in chapter 4. In
other words, data should be prepared in the memory like two 8-bit pieces
of data at the same address line. One piece in the 8-bit most  significant
part and the other one in the 8-bit least significant part of the 16-bit
memory word. The usual 16-bit operand usage is also possible here for
any  other  non-multiplication  operations.  See  the  detailed  SIMD
instructions description in chapter 5

� Extra hardware have been added for the possibility to provide PDOT and
PSAD instructions
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3.3.3 Register File

The Register File is not a total Data Path object, it should be in between the
Data and the Control Paths. We will describe it here, in the Data Path sub-
chapter.  The  Register  space  of  this  processor  can  be  divided  into  four
different pieces of hardware: 

� The General Purpose Registers space (GPR) that shares the space with the
Special Purpose Registers, see figure 3.3

� The Address Pointer Registers space (APR)
� The Serial Accumulator Registers space (SA)
� The Parallel Accumulators Registers space (PA)

The General  Purpose  Register  space  is  a  set  of  32  16-bit  registers.  The
numerical and functional description, and also the sharing indexes for the
Special Purpose Registers are shown in figure 3.3.

The Address Pointer Registers are special purposes registers, that are used
for storing addresses for memory accesses. There are eight APR`s in the set.
This is enough for flexible and useful accesses to the memories. This is a
separated set of eight 16-bit registers. They don't share the space with a
general purpose register space for organizing the parallel access to the data
from the Register File and from the memories.  

The  Serial  Accumulator  Register  space  is  used  to  keep  the  intermediate
computation result in the loop without additional memory accesses. Only
the serial data paths use these serial accumulator registers. This is a set of
eight 40-bit registers, consisting of 32 significant bits and 8 guard bits.

From the other side, Parallel Accumulator Registers space is used to keep
the intermediate computation result in the loop without additional memory
accesses.  Only  the  parallel  data  paths  use  these  parallel  accumulator
registers. This is a set of eight 20-bit registers, consisting of 16 significant
bits and 4 guard bits.

Parallel and Serial Accumulator Registers do not share the space with the
GPR`s, both have different hardware for addressing.
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Figure 3.3: General and special purposes registers space
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Figure 3.4: Register File Structure



The  Special  Purpose  Register  space  is  a  set  of  registers  for  auxiliary
purposes, for special computation cases, for processor control status and
for configuration. A more detailed description is in Appendix B.1.

The  Register  File  provides  up  to  four  different  read  accesses  and  two
different write accesses the same instruction cycle. Both MAC0 and MAC1
can write data to any register. The special control logic is responsible for
choosing the correct chain in the input multiplexers, see figure 3.4. 
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3.4 Control Path 

This sub-chapter gives the overall description of the control path for this
processor. In this work we did not concentrate on the detailed design of the
control  path  but  have  proposed  the  core's  solutions  and  root  designing
features. The main task of the Control Path is to provide the program flow
control. It supplies the correct instruction to execute, decodes instructions
into  control  signals  and it  manages  asynchronous job [2].  It  also should
supply the correct order of instruction execution by the program counter
(PC).

3.4.1 Overall Description

The  simplified  version  of  the  Control  Path  is  shown  in  figure  3.5  and
contains the programmable Finite State Machine (FSM) or the Program Flow
Controller, Program memory,  and Instruction decoder.

The Program Flow Controller reads the flag registers and status signals from
the  processor.  It  manages  the  next  PC  address  for  program  memory
addressing according to the execution of the current instruction. The next
instruction, pushes the current instruction from the program memory to the
instruction  decoder.  The  program memory  is  a  32-bit  wide,  64kW large
memory. 

Figure 3.5: Control Path structure
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The Instruction decoder processes an instruction word and generates the
control signals to the Data Path, to the data memory, and of course to all
required  parts  of  the  processor.  The  Instruction  decoder  also  provides
address generation for the data according to the instruction word. Later we
will  discuss  the  addressing  design  strategy  and  the  pipeline  instruction
execution for the designed processor.

3.4.2 Design for Addressing

During  the  processor  design  we  can  distinguish  between  two  types  of
addressing strategies. The operand addressing and the program addressing.
The program addressing is executed in the Program Flow Controller. The
operand addressing means memory addressing and register addressing.

Program  addressing  calculates  the  valid  sequence  number  of  every  next
instruction. In other words it calculates the valid PC address. The sequence
of  events  is,  first  the control  logic  should fetch an instruction from the
program  memory  according  to  the  current  PC  address,  then  it  should
decode the fetched instruction and generate the necessary control signals.
After defining if the next instruction is a branch or not, the calculation logic
should generate the valid PC address for the next fetching. The designed
processor could generate the following addresses:

� PC <= PC + 1 – not a jump instruction
� PC <= PC + 1 – a jump instruction, but jump is not taken
� PC <= jump address – a jump instruction, jump is taken

A more detailed description of the branching techniques in the program
flow control logic is in the William Stallings reference text book [7].

The  operand  addressing  is  one  of  the  toughest  processor  design  step,
because it consumes much more coding then the other parts. According to
the architecture plan we need to calculate two different addresses at the
same instruction  cycle.  For  this  reason  two  identical  address  generation
logics have been designed, see figure 3.6.

The  main  addressing  research  result  is  a  special  addressing  mode,  the
totally  flexible  Memory  Index  addressing  mode.  It  uses  a  special  offset
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technique by composing the so-called row and column offsets. The detailed
description of the addressing strategy that has been used in this processor
can be found in chapter 4.
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Figure 3.6: Address Generation Logic structure



3.4.3 Pipeline Structure

The pipelining means dividing the processing job from fetching to writing
back  the  result  into  several  steps.  The pipelining is  also  responsible  for
allocating  of  every  step  of  job  into  independent  pieces  of  hardware  in
parallel, for assigning each job step into a clock cycle, and for running all
jobs  sequentially  in  parallel  [2].  The  pipelining  increases  the  overall
processor performance. 

There are several strategies in the pipeline design. The main tricky place is
the  number  of  pipelining  steps.  According  to  the  designed hardware  an
instruction should be executed in the following order: 
� fetching of an instruction
� decoding of an instruction
� calculating a valid operands addresses
� performing operation (execution)
� writing the final result

We  have  divided  the  instruction execution  job  into  six  clock  cycles,  see
figure 3.7.  First we need to fetch instruction, decode it and calculate the
valid execution operand address (fetch operand).  Next two cycles are for
executions of the   operation. Finally,  we are storing data in a last step.

Figure 3.7: Pipeline principle
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where:  
FI – fetch instruction
DI – decode instruction
FO – fetch operand
E1 – performing the 1-st operation
E2 – performing the 2-nd operation
ST – store the result

All instructions in the instruction set can be calculated in one executional
cycle, except the MAC instructions, where the multiplication and following
accumulation of the result are taking place. We have to pay attention at this
fact because the media algorithms are fully intensive with MAC operations.
These instructions  use  two execution cycles,  the rest  ones  use only  one
execution cycle, see figure 3.8:

Figure 3.8: Variable 5- and 6-step pipeline stages

The “madd” and the “and” instructions take six and five clock cycles to be
executed  respectively.  This  is  a  good  case  for  exploring  the  pipeline
reliability property. As you can see both these instructions want to store the
result at the same execution cycle. The data hazard occurs if they use the
same  resources.  To  avoid  this  problem  and  any  other  timing  or  data
hazards,  a  pipeline  controller  is  expected.  It  should  spy  the  data
dependencies and correct them according to the algorithm, see figure 3.9: 
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The first instruction takes six clock cycles to be executed. To perform the
execution of N instructions we need [6 + (N -1)] clock cycles, if there are no
branch  instructions  in  the  stream.  The  processor's  control  logic  should
check the branch status every time the branch occurs, if it is a taken branch
or not. If the branch is taken we are loosing four clock cycles according to
our design.

Figure 3.9: Pipeline data hazard

To  improve  the  overall  processor  performance  some  branch  prediction
strategies might be useful. In this work we have concentrated only on the
hardware  design  features.  The  more  detailed  information  about  the
pipelining techniques and the branch prediction strategies is  in the William
Stallings text book [7].
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3.5 Data Memory

According to the design specification all  memories should be single port
SRAM only. This gives the advantage of porting design to different silicon
processes. 

The size of the data memory addressing space should be large enough for
covering  all  functional  purposes.  Four  16-bit  different  data  accesses  are
supported in parallel. We have divided the memory bank into four memories
(M0, M1, M2, M3), see figure 3.10:

0x0000 0x0000 0x0000 0x0000

Memory Bank 0

... (64kW-2) ...

M0

Memory Bank 1

... (64kW-2) ...

M1

Memory Bank 2

... (64kW-2) ...

M2

Memory Bank 3

... (64kW-2) ...

M3

0xFFFF 0xFFFF 0xFFFF 0xFFFF

Figure 3.10: Data memory structure

Together  the memories  have 256kW of memory addressing space,  64kW
each. It's possible to provide the communication between memories via the
special “between memory-memory” instruction (BMM). For a more detailed
description of this instruction, please, refer to chapter 5.
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3.6 Flags

This DSP processor uses a set of four flags that are updated after most of
the operations.  The flags describe the internal computation status of the
processor.  They  are  checked  before  using  the  conditional  execution
instructions. 

The flags are N, Z, C and O. The N flag is set when the result is negative, the
Z flag is set when the result is zero, the C flag is set when there is a carry
out and the O flag is set when there is a overflow. The flags are reset as soon
as the conditions are not fulfilled any more.

3.6.1 Model

Each data path has it's own set of flags. This is only a preparation for the
future and in this design they all work as one set of flags. As an example, all
O flags must be set in order to have overflow as the computational status.
The flags in the parallel data path0 are called p_N0, p_Z0, p_C0 and p_O0. In
parallel data path1 they are called p_N1, p_Z1, p_C1 and p_O1 and so on. In
the serial data paths the flags are called s_N0, s_Z0, s_C0, s_O0 and s_N1,
s_Z1, s_C1, s_O1. The index always specifies the data path number and the p
or s specifies if it's a parallel or a serial data path. 

There  are  two 16-bit  registers  for  storing  the flags,  the  s_flags and the
p_flags.  The s_flags stores the flags of the two serial data paths and the
p_flags stores the flags of the four parallel data paths. The two registers
showing how the flags are stored can be seen below.

1

p_N0

1

 p_N
1

1

 p_N
2

1

 p_N
3

1

 p_Z0

1

 p_Z1

1

 p_Z2

1

 p_Z3

1

 p_C0

1

 p_C1

1

 p_C2

1

 p_C3

1

p_O0

1

p_O1

1

p_O2

1

 p_O3

Figure 3.11: The p_flags register
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Reserved

1
s_N0

1
s_N1

1
s_N2

1
s_N3

1
s_O0

1
s_O1

1
s_O2

1
s_O3

Figure 3.12: The s_flags register
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3.6.2 Hardware realization
                                                                                                            
   p_N0                                                   p_Z0
   p_N1                                                               p_Z1
   p_N2                            N                              p_Z2                             Z
   p_N3                                                               p_Z3
   s_N0                                                                s_Z0
   s_N1                                                                s_Z1
                    
                                                                                                            
   p_C0                                        p_O0
   p_C1                                                p_O1
   p_C2                            C                              p_O2                             O
   p_C3                                                               p_O3
   s_C0                                                                s_O0
   s_C1                                                                s_O1

3.6.3 Conditions

All  conditions,  for  condition  based  instructions,  are  flag  depending.
Different flag   combinations gives different conditions. The conditions are
based on the merged N, Z, C and O flags. All flag combinations and their
respective conditions are in table 3.1. 

Table 3.1: Condition table

Condition Description Flags
GT Greater than N=0 and Z=0

GTE Greater than or equal N=0

LT Less than N=1

LTE Less than or equal N=1 or Z=1

E Equal Z=1

NE Not equal Z=0

C Carry out C=1

NC Not carry out C=0

O Overflow O=1

NO Not overflow O=0
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4
Addressing design

4.1 Preview

The task of the address generation unit, AGU, is to generate the correct 16-
bit addresses each clock cycle. The AGU is designed so it can access up to
four memories at the same clock cycle. The memories can be accessed with
an individual offset between each of them. The data can be addressed with
column  and  row  offsets  for  a  very  flexible  addressing.  The  AGU  also
supports Modulo addressing and BRA, bit reversed addressing, as well as
most other basic addressing. Exactly what is supported and not is described
in this chapter.

4.2 Hardware Model

Two  different  addresses  can  be  calculated  at  the  same  time  from  two
identical address calculation logics inside the AGU, see figure 3.6. There is a
top address register, the TAR, and a bottom address register, the BAR, that
supports modulo addressing for each address calculation logic. There is also
support  for  bit  reversed addressing,  BRA.  The  BRA supports  masking of
MSB`s. How many MSB`s that should be masked is checked in the MASK
register.  There  are  two  special  offset  registers,  the  IND_OFFSET  that
specifies the offset between memories and the COL_OFFSET that specifies
how large the column offset should be. The Row offset is taken from the
instruction word`s. There are four Table registers that specifies the length
of the row and column offset when using Memory index addressing.
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4.3 Addressing Model

There is a set of eight 16-bit address pointer registers,  APR0–APR7. The
memory  space  in  the  memory  bank  is  divided  into  four  memories  with
64KWords each.  We need to address only one 16-bit  address pointer  to
access a word in each memory inside the memory bank. The address can be
added with an optional offset. The offset is divided into a large offset, the
column offset,  and a small offset,  the row offset.  There is also an offset
between different memories in the memory bank, the individual offset. The
individual  offset  affects  all  addressing  modes,  even  those  without  any
offsets.

The way to generate a new address is shown below.

Base address, APR0–APR7

                               +
Column offset, COL_OFFSET

                               +
Row offset

                               +
Individual offset, IND_OFFSET

                               =
New address

The individual offset works in the way that it multiplies the offset length
with the memory number. As an example, see table 4.1 where the individual
offset is two. The length of the individual offset should be configured before
execution in the special offset register, IND_OFFSET.

The column offset is an offset with a configurable field length that, together
with the row offset, must not be greater than 216. The length of the column
offset should be configured before execution in the special column register,
the COL_OFFSET.

The row offset is a programmable offset that is specified in the instruction
word. The length of the row offset differs according to the instruction word
that is used. When using any table addressing, as memory index addressing
for an example, the width can be up to 16-bits as long as the column offset
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is compensated for this.
This concept of adding the different offsets to the base address will give
each data path it's own address as below:

address for datapath0 <= apr[15:0] + column offset + row offset + ind.off.*0
address for datapath1 <= apr[15:0] + column offset + row offset + ind.off.*1
address for datapath2 <= apr[15:0] + column offset + row offset + ind.off.*2
address for datapath3 <= apr[15:0] + column offset + row offset + ind.off.*3

Of course, each type of offset can be zero and is in that case not adding to
the new address. 

Table 4.1: Addressing with an individual offset of two

Memory 0 Memory 1 Memory 2 Memory 3

READ data data data

data data data data

data READ data data

data data data data

data data READ data

data data data data

data data data READ

************ ************ ************ ************

READ data data data

data data data data

data READ data data

data data data data

data data READ data

data data data data

data data data READ

************ ************ ************ ************
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4.4 Addressing Modes

According to the strategy of addressing, it's possible to organize a totally
flexible offset with a length of up to 16-bits. There are two addressing mode
types, the standard and the extended. The standard addressing modes are
chosen in the instruction word and the extended are pre-configured in the
status register, STATUS. The list of addressing modes are listed in table 4.2. 

Table 4.2: Addressing modes

Mode Description AM type
Register direct addressing - -

Register indirect addressing A <= aprX[15:0]

Post A <= aprX[15:0]

Standard

Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

Standard

Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

Standard

Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Aux. Reg[15:0]

Standard

Register indirect, 

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

Standard

Register indirect,

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

Standard

Modulo addressing See description later in this chapter Extended

Bit reversed addressing A <= aprX[0:15] (when MASK is zero) Extended

Memory index addressing See description later in this chapter Extended

Only  the  simple  Register  addressing  mode  keeps  the  address  pointer
unchanged  after  execution.  The  rest  of  the  modes  adds  different  post
changes to the APR`s and this is for flexibility when doing hardware loops.
The address for the first step in the loop must be prepared in one of the
address pointer registers (APR0–APR7).

Register direct addressing is a mode that is chosen by the instruction. It's
used when the data is already inside a register, thus in this case it does not
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need to be addressed in the memory.

Register indirect addressing is a mode where we address data that is inside
the memory. The data is found in the memory at the address that is given by
the chosen APR.

Register  indirect  addressing  with  post  changes  such  as  increment,
decrement, plus offset, minus offset and plus index register is used when
the address in the APR`s must be updated after execution. This is necessary
for being able to generate the correct addresses when doing hardware loops.

Modulo  addressing,  or  circular  addressing  that  it's  also  called,  is  an
extended addressing mode that can be used in conjunction with any other
standard addressing modes. It's very useful when working with circular data
buffers. When using Modulo addressing, there must be a TAR, Top Address
Register,  and  a  BAR,  Bottom  Address  Register,  already  configured  that
specifies  a  top  and  bottom  address.  When  using  Modulo  addressing  in
conjunction with another standard addressing mode with post changes and
the address pointer reaches the bottom address, the address flips over to
the  top  address  instead  of  the  next  address.  In  this  way  the  generated
addresses circulates between the top address and the bottom address and
it's  because  of  this  it's  also  called  circular  addressing.  When  Modulo
addressing  is  used  the  circular  addressing  is  applied  to  Memory1  and
memory3. 
 
Bit-Reversed Addressing, BRA, is also an extended address mode that can
be used in conjunction with any other standard addressing modes. When
the  address  is  generated,  the  BRA  inverts  the  bits  according  to  a  pre-
configured  mask  register,  MASK.  The  mask  register  specifies  how many
MSB`s that should not be inverted, thus masked. An example is given in
table 4.3.
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Table 4.3: Example of BRA with masking

APR BRA MASK Note
0000111100001111 1111000011110000 0 0 masked MSB`s

0000111100001111 0111000011110000 1 1 masked MSB

0000111100001111 0011000011110000 2 2 masked MSB`s

0000111100001111 0001000011110000 3 3 masked MSB`s

0000111100001111 0000000011110000 4 4 masked MSB`s

0000111100001111 0000100011110000 5 5 masked MSB`s

............................... ............................... . ............................

0000111100001111 0000111100001111 16 16 masked MSB`s

 

The most interesting mode is the memory index addressing, that is a table
address mode. It gives a very flexible opportunity to address data for a wide
range of applications. It uses a table that must be pre-configured with a row
and a column offset. The length of the column and the row offset can be
anything between 0 and 216. However, they must not exceed 216  when they
are added together. In this way we can organize 2-dimensional addressing.
It supports accessing data in any pre-configured Zig-Zag order according to
the offsets. The Memory index addressing uses four special table registers
(Tr0-Tr3) that can be configured in the TABLE field in the status register,
STATUS. How the special table registers are chosen can be seen in table 4.4.

Table 4.4: Selection of the table registers

Code Table register
00 Tr0

01 Tr1

10 Tr2

11 Tr3

In the 4-bit TABLE field in the STATUS register we can configure any order
of table accesses. The first 2-bits, Table 1, specifies the column offset and
the last 2-bits, Table 2, specifies the row offset. The Table field can be seen
in table 4.5. “XX” specifies one of the four table registers (Tr0-Tr3).
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Table 4.5: Description of the TABLE field

Table1, column Table2, row
b'XX' b'XX'

b'XX' b'XX'

b'XX' b'XX'

b'XX' b'XX'
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5
Instruction set design

5.1 Preview

The instruction set  is  the interface  between hardware and software.  The
performance  of  the  DSP is  heavily  dependent on the  instruction set.  An
instruction set must be simple and as orthogonal as possible. If it can be
highly orthogonal, then the instruction set is efficient.

The task was to design a set of very few instruction words with instead as
many specifiers as possible.
 
The  instruction  set  for  this  DSP  uses  eight  32-bit  instruction  words.
However, we have only used six of them in our design and therefor two of
them are reserved for future use. The six instruction words that are used are
MOVE, ALU, MAC, DMAC, SIMD and P_FLOW.

Because the 32-bit limitation in the instruction words, there is not space for
all specifiers that are needed. There have to be some sort of a trade off. In
this work we concentrated on making the instruction words as flexible as
possible  regarding  addressing.  The  trade  off  for  having  such  a  high
addressing flexibility is to use a status register for additional specifiers. In
our design we have used the 16-bit GPR31 as the status register, STATUS.
The status register is always checked before execution for pre-configuring
the DSP and is updated after execution. All instruction words are designed
to use the status register.
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5.2 Hardware Description

The hardware architectures for the data paths of this  DSP processor are
shown in  chapter  3.  The  processor  core  have  six  executional  units,  one
extended mac, the MAC0 containing a serial data path and four parallel data
paths, and MAC1 containing another serial data path. 

The data can be accessed in the general purpose registers, GPR0-GPR31, and
in the memories, M0-M3. When accessing memories, this is done through
eight  16-bit  address  pointer  registers,  APR0-APR7,  containing  memory
addresses. The APR`s are the same for all data paths. The description of the
address  generation  unit,  AGU,  that  is  responsible  for  that  the  correct
addresses is being generated, is described in chapter 4. 

The data can also be stored and accessed in accumulator registers, ACR`s.
Each data path have its own set of ACR`s for saving intermediate results.
The serial data paths have a set of eight 40-bit accumulator registers each.
The parallel data paths don't do the same kind of processing and have no
use of 40-bit precision, and therefor they instead have a set of eight 20-bit
accumulator  registers  each.  This is  enough because  the most  computing
intense that can occur in a parallel data path is the multiplication by two 8-
bit data.

5.2.1 The STATUS register

When designing our model we decided that the DSP processor's instruction
set must be as flexible as possible. However,  if everything should be 100
percent  flexible,  then  everything  must  be  programmable.  If  we  make
everything programmable, then the instruction words will be very long. The
instruction words in our design are limited to 32-bits so a trade off is, as
always, needed. We had to carefully analyze which functions that should be
programmable and which that instead should be configurable. The functions
that was decided to be configurable was put into a status register, STATUS.
The status register  is  one of the general purpose registers (GPRs)  in the
register file. The GPR31 was chosen as the status register, STATUS.
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5.2.2 Partitioning between configurable and programmable

The type of the data, if it has integer or fractional representation or if it's
signed  or  unsigned,  should  be  known  before  accessing  it  in  order  to
generate  the  correct  control  signals.  Because  of  this,  the  specifiers  for
selecting  it  are  decided to  be  configurable  and are  moved  to  the  status
register.

When  computing  with  a  DSP  processor,  hardware  loops  are  performed
almost all of the time and the way to handle the data must be known before
entering the loop. If saturation should be turned on or off, if the data should
be rounded and truncated to extract native width and the use of carry or
saturation arithmetic must be known and is therefor moved to the status
register. 

All configurable specifiers are in the status register. The status register can
be  seen  in  figure  5.1.  All  programmable  choices  are  kept  in  respective
instruction word)
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Figure 5.1: The status register, STATUS

5.2.3 Additional specifiers in the status register 

The Extended AM field selects  additional  configurable  addressing  modes
(AM`s) that affects all ordinary addressing modes that are chosen in the
instruction word. The available extended addressing modes are described in
chapter 4.

All data paths are MAC`s that supports ALU operations. Because of this, the
ordinary  way  to  always  use  the  accumulator  registers  to  accumulate
intermediate  results,  are  not  so  efficient.  All  instructions  don't  use  the
ACR`s and in order to avoid the need for clearing the accumulator registers
each time before such instructions, we have designed for the possibility to
toggle the accumulator registers on and off. This is specified in the ACR
field in the status register and is performed by a simple bypass through a
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multiplexer. 

The Table field specifies the column and row offset registers. The first 2-
bits specifies one of the four table registers (Tr0-Tr3) that should be used as
the  column offset  and  the  last  2-bits  specifies  which  of  the  four  table
registers (Tr0-Tr3)  that should be used as the row offset.  For a detailed
description of Table addressing, see Memory index addressing in chapter 4. 

The 2-bit reserved field is for future use.
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5.3 MOVE

During DSP,  a  lot of  time is  used for ordering the data such as  moving
between registers, memories etc. This is very time consuming and a lot of
effort  have  been  made  in  making  the  move  operations  as  efficient  as
possible. If the DSP processor  is very fast at calculations but don't have an
effective move arithmetic, then there is no point with the fast calculations.
In this case we will loose cycles when moving and then gain them back when
calculating and the result will be all but impressive. 

The complexity of designing the move instruction word increases with the
number of executional units. In our case with six executional units, trade
offs  are  necessary.  The chosen design will  be explained in detail  in  this
chapter.

5.3.1 MOVE model

Our move instructions supports moving from the two serial data paths or
the four parallel data paths to the four memories. The opposite order, from
the memories to the serial  and the parallel  data paths,  is of  course also
supported.  There  is  also  a  possibility  to  load  a  16-bit  immediate  value
directly to the general purpose registers, the address pointer registers or the
memories.  When  moving  between  parallel  data  paths  and  memories  all
parallel data paths are affected. This means that there is always four values
that are moved between the memories and the parallel data paths by only
one move instruction. The same is true for the dual MAC structure, with two
serial data paths. The only exception is that there are two results generated
instead of four. 

5.3.2 MOVE instruction word

There is always a trade off between programmability and configurability in a
relatively short instruction word. All needed specifiers can't be fitted in a
32-bit instruction word and therefor it depends on the status register as
well. When moving to memory or general purpose registers it's vital that the
data is 16-bit because of the hardware limitation of 16 bits. However, most
of  the  time the  data  is  larger  than 16  bits  because  of  the  much higher
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internal precision. To solve this problem their is support for converting to
native length. This is decided by the status register, STATUS, that is always
checked before execution. The explanation of the status register is in sub-
chapter 5.2. 

After  our  research,  the  instruction  word  that  is  seen  in  figure  5.2  was
designed.
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Figure 5.2: MOVE instruction word

The Type field identifies that it's a move instruction. The OP field decides
what  instruction that  should be  used.  The  supported instructions  are  in
table 5.1. 

Table 5.1: MOVE  instruction list
Op Instruction Op Instruction

000 NOP 100 SWP (SWaP data between registers)

001 BMM (Between Memory and Memory) 101 CLA (CLear Accumulator)

010 BRM (Between Register and Memory)
110

LD (LoaD register or memory with
immediate data)

011 BRR (Between Register and Register) 111 Reserved  

The  AM field  is  described  in  the  addressing  part  for  the  move  later  in
chapter 5.3.3.

The S/D field  has a multi purpose depending on which instruction that is
being used.
 
If the instruction is BRM, Between Register and Memory, then it specifies if
the source is a GPR, a SA, a PA or a memory. A SA is a serial ACR in both
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MAC0 and MAC1 and the PA is  one ACR in each parallel  data path.  For
example, if the source is PA0 than, this means that the data in each PA0, in
the parallel data paths, are moved to all memories. In this case, PA0 in data
path0 is moved to memory0 and ACR0 in data path1 is moved to memory1
and  so  on.  Both  the  SA`s  and  the  PA`s  are  specified  in  the  source
accumulator, S_ACR, field.

If  the  instruction is  CLA the  S/D field  specifies  which accumulator  that
should be cleared. It can be an ACR in the serial data path in MAC0, an ACR
in the serial data path in MAC1, both ACR`s in both serial data paths or all
four ACR`s in the parallel data paths. 

If the instruction instead is LD, then the S/D field specifies if the destination
is a GPR, a APR or a memory.

The Index Reg, index register,  field is selected if  the addressing mode is
index addressing. The 5-bit Index Reg field specifies one of the 32 GPR`s
that should be used as the index register.

The offset field is selected by the address modes that uses offsets. It's an
large 11-bit standard offset that is fully programmable in the instruction
word and it has nothing to do with column and row offsets.

The Imm16 field is a 16-bit field that is used for immediate address and
immediate data. The LD instruction selects this field. The S/D specifier then
decides if the 16-bit data is an address or data. If S/D specifies the memory
or a GPR, then it's immediate data and if the S/D instead specifies a APR,
then it's an immediate address.

The mS and the mD field, each specifies one of the four memories as the
source and the destination. The S_point and D_point, each specifies one of
the eight APR`s as the source and destination addresses. The Sreg and Dreg,
each specifies one of the 32 GPR`s as the source and destination registers. 
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5.3.3 MOVE addressing model

The complete addressing model for this processor is described in chapter 4. 

The MOVE model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.3. 

First,  the  MOVE  instruction  word  is  being  read.  If  the  source  is  in  the
memory the address to it is generated and the APR is updated, for the next
instruction  cycle,  based  on  the  incrementing  technique  that  is  currently
being used. The data is determined and accessed. Now the MOVE instruction
is being executed and finally  it  starts  all  over  again by reading the next
instruction.
  

     

      

Figure 5.3: The MOVE addressing flow graph

The addressing modes that  are  supported by the MOVE instructions are
listed in table 5.2.  These addressing modes are specified in the instruction
word.

�(

Execute the MOVE instruction Access the data in the register 
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If memory bank access is 
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Table 5.2: MOVE addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0] 

001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

010 Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + AuxReg[15:0]

100 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + offset

101 Register indirect, 

post decremented by offset

A <= aprX[15:0] 

Post A <= aprX[15:0] – offset

110 Reserved -

111 Reserved -

The MOVE also supports addressing with the extended addressing modes
that  can  be  chosen  inside  the  status  register,  STATUS.  The  extended
addressing  modes are  used in  conjunction with  the standard addressing
modes. These modes can be helpful if a lot of data has to be rearranged in
the memories. In this case, there might be a need to loop MOVE instructions
and the extended addressing modes are very useful for this. The supported
extended  addressing  modes  can  be  seen  in  table  5.3.  The  extended
addressing modes are applicable to all MOVE addressing modes. 

Table 5.3: Extended addressing modes

Extended AM Addressing mode Description
00 Not used No extended addressing mode

01 Modulo addressing See chapter 4

10 Bit reversed addressing See chapter 4

11 Memory index addressing See chapter 4
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5.4 ALU
 
The Arithmetic and Logic Unit, ALU, supports the 16-bit logic, arithmetic
and  shift  operations.  In  order  to  speed  up  these  operations,  this  DSP
processor can execute one logic, one arithmetic and one shift operation in
the same cycle. 

The  ALU  architecture  is  divided  into  three  blocks  that  the  operands
propagates through.  The first  block is  the logic  block,  the second is  the
arithmetic block and the third is the shift block. The only limitation is that
the order of the blocks are fixed. The order must be, first the logic, second
the ALU and third the shift operation. However, any block can be disabled if
not needed. The disabling is done by providing a NOP instruction for that
block. Research has proved that this fixed order is in fact the order that is
needed  in  80  percent  of  the  cases.  In  those  80  percent,  this  approach
provides a three times theoretical speed up.

In order to improve performance even further,  the instruction word uses
one more argument then usual in order to avoid implied addressing in most
cases.  By  avoiding  implied  addressing  the  performance  is  improved  for
some applications. The improvement is caused by the fact that the result is
stored  at  the  correct  location  directly  without  the  need  for  a  MOVE
instruction. 

5.4.1 ALU model

All ALU operations are provided by the serial data paths in either MAC0 or
MAC1.  There  is  no  special  ALU  unit,  instead,  each  MAC have  hardware
support for ALU instructions. 

The serial data paths can read data from any of the memories or the general
purpose registers. The computed results can also be written to any memory
or general purpose register. This strategy was chosen because there is one
instruction cycle saved each time we can avoid a MOVE instruction. In this
way, it's not necessary to execute move instructions to prepare data in the
general purpose registers before execution. 

The inputs of the serial data paths are 16-bit but internally they are sign or
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zero extended depending on the operation. Internally all computations are
40-bit in order to provide a high precision of the result. The 40-bit results
can be rounded, saturated and truncated in order to get the 16-bit native
length at the output. 

5.4.2 ALU instruction word

The ALU instruction word is designed so that implied addressing is avoided
in most cases. Implied addressing means that the destination is both the
second source and the destination. By avoiding this and instead keep two
sources and a separate destination we can further improve the performance
in most cases. The reason for the improvement in performance is that move
instructions can be skipped in the cases when the second source is not the
same as the destination.         

The configurable specifiers are in the status register, STATUS.

After our research, we designed the instruction word that is in figure 5.4.
The dark gray fields are for use with the Register direct modes and the light
gray are for use with the Register indirect modes.
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Shift
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SReg1
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S_point2

5
Row offset

Imm10
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S/DReg
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S/D_point

S/D_ACR

Figure 5.4: ALU instruction word

The Type field identifies that this instruction word is the ALU. The AM field
specifies the addressing modes. The addressing modes are described later in
sub-chapter 5.4.3. 

The  Logic  field  specifies  the  logic  instruction.  The  supported  logic
instructions are listed in table 5.4.
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Table 5.4: LOGIC instruction list

Code Instruction Code Instruction
000 NOP 100 NOT

001 AND 101 NOR

010 OR 110 NAND

011 XOR 111 Reserved

The  Arithmetic  field  specifies  the  arithmetic  instruction.  The  supported
arithmetic instructions are listed in table 5.5.

Table 5.5: ARITHMETIC instruction list

Code Instruction Code Instruction
00000 NOP 10000 Reserved

00001 ADD 10001 Reserved

00010 SUB 10010 Reserved

00011 INC 10011 Reserved

00100 DEC 10100 Reserved

00101 MIN 10101 Reserved

00110 MAX 10110 Reserved

00111 ABS 10111 Reserved

01000 SUBABS 11000 Reserved

01001 ABSSUB 11001 Reserved

01010 ADDABS 11010 Reserved

01011 ABSADD 11011 Reserved

01100 AVG 11100 Reserved

01101 CMPE 11101 Reserved

01110 NEG 11110 Reserved

01111 Reserved 11111 Reserved

The  Shift  field  specifies  the  shift  instruction.  The  supported  shift
instructions are listed in table 5.6.
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Table 5.6: SHIFT instruction list

Code Instruction Code Instruction
000 NOP 100 Reserved

001 SHRA 101 Reserved

010 SHRL 110 Reserved

011 SHL 111 Reserved

The Sreg1 and Sreg2 specify source1 and source2. Each one specifies one of
the 32 GPR`s in the register file. The S/Dreg specifies one of the 32 GPR`s
as the destination register.  The Sreg1, Sreg2 and Dreg fields are selected
when the register direct address mode is chosen.  

The mS1 and mS2 specify source memory1 and source memory2. The mD
specifies the destination memory. 

The S_point1 and S_point2 specify address1 and address2 to the memories.
The S/D_point specifies the destination address.  The addresses are  used
together with the mS1, mS2 and mD/S to point to address spaces in the
selected memories.

When working with immediate data, implied addressing is being used and
this results in that the destinations (mD, D_point and DReg) also specifies
the source.

The S/D_ACR field is selected if the ACR is turned on in the status register,
STATUS. It selects one of the eight 40-bit ACR`s in the serial data path of
MAC0. It specifies both the source and the destination ACR. This field is
only used when doing hardware loops.

The 5-bit Row offset is selected by the address modes that supports offset
addressing. When this is active, implied addressing is being used because
the second source field is instead used for the offset.  This row offset is
always combined with the configurable column offset register.

The Imm10 is selected by the address modes that supports working with
immediate data. This can be useful for some applications, especially when
shifting.  As  an  example,  it  supports  a  quick  and  easy  way  to  perform
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scaling.

5.4.3 ALU addressing model

The complete addressing for this processor is described in the chapter 4. In
the ALU, the following is described.

The ALU model of addressing can be seen as an addressing flow graph. This
addressing flow graph is illustrated in figure 5.5. 

First, the ALU instruction word is being read. If the sources are in memories,
the address for the access is generated and the APR is updated, for the next
instruction  cycle,  based  on  the  incrementing  technique  that  is  currently
being  used.  Next  the sources are  accessed.  Next  the instruction is  being
executed and after this the result is written back to the register file or the
memory. Finally it starts all over again by reading the next instruction.  

Figure 5.5: The ALU addressing flow graph

The available addressing modes for the ALU in this processor are listed in
table 5.7. These modes are specified in the instruction word.
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Table 5.7: ALU addressing modes

Code Addressing mode Description
000 Register direct No address

001 Register direct 

with immediate data

No address

010 Register indirect A <= aprX[15:0]

Post A <= aprX[15:0]

011 Register indirect 

with immediate data

A <= aprX[15:0]

Post A <= aprX[15:0]

100 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

101 Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

110 Register indirect, 

post incremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] + (col_offset + row_offset)

111 Register indirect, 

post decremented by offset

A <= aprX[15:0]

Post A <= aprX[15:0] – (col_offset + row_offset)

The ALU also supports addressing with the extended addressing modes that
can be chosen inside the status register, STATUS. The extended addressing
modes  is  used in  conjunction with  the  standard addressing  modes.  The
supported extended addressing modes can be seen in table 5.3. 
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5.5 MAC

During  DSP,  most  of  the  calculations  are  multiply  and accumulate  while
doing  a  hardware  loop.  These  calculations  are  executed  inside  a  MAC,
Multiply and ACcumulate, unit that generates a sum of products, meaning
that the result  of the multiplication is  always added or subtracted to an
ACR. These operations are very computing intense and it's often the MAC
unit that is the bottleneck when measuring the performance.

In  order  to  improve  performance,  the  instruction  word  uses  one  more
argument then is usual in order to avoid implied addressing in most cases.
By  avoiding  implied  addressing  the  performance  is  improved  for  some
applications. The improvement is caused by the fact that the result is stored
at the correct location directly without the use of a MOVE instruction.

5.5.1 MAC model

In the MAC mode the serial data path in MAC0 is used. The serial data path
uses two 16-bit operands. The data can be accessed in two ways. In the first
way, the data are accessed from two memories, one from each memory. The
description of the address generation unit, AGU, that is responsible for that
the correct addresses is being generated, is described in chapter 4. In the
second way, the data are taken from two registers in the register file. 

After the processing, the result can be stored in any of the memories, in any
GPR in the register file or in one of the eight 40-bit ACR`s in the serial data
path. The source ACR is always the same as the destination ACR.

In order to do hardware loops with the MAC, the 16-bit data has to be taken
from the memories. The design is not limited to this but it's rather pointless
to use the register file for looping because of the limited space in it.

The inputs of the serial data path are 16-bit but internally all computations
are 40-bit in order to provide a high precision of the result.  The 40-bit
result can be rounded, saturated and truncated in order to get the 16-bit
native length at the output.
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5.5.2 MAC instruction word

When  designing  our  model  we  decided  that  the  MAC  instruction  word
should be as flexible as possible regarding accessing of  the data.  In this
design it was solved by adding an extra argument so that two sources and
one  destination  could  be  addressed  without  the  need  for  implied
addressing.

The  MAC  mode  have  all  configurable  specifiers  in  the  status  register,
STATUS and the programmable specifiers are in the MAC instruction word.
The MAC instruction word can be seen in figure 5.6. The instruction word
separates into two levels illustrated as, one light gray and one dark gray. The
dark gray level is only for the Register direct mode and the light gray level is
only for the Register 
indirect mode.
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Figure 5.6: MAC instruction word

The Type field identifies that this instruction word is the MAC instruction
word.  The  Op  field  selects  which  instruction  that  should  be  used.  The
supported  instructions  are  listed  in  table  5.8.  The  AM  field  selects  the
addressing mode. The supported MAC addressing modes are described in
the addressing model  later in sub-chapter 5.5.3.  All  available  addressing
modes can be found in chapter 4.

The D field specifies if the destination is one of the 32 GPR`s in the register
file,  one of  the four memories  in the memory bank or  one of  the eight
ACR`s in the serial data path of MAC0.  

The Row offset in the instruction word is combined with the configurable
column offset to give a very flexible way of accessing the data. Because the
Row  offset  is  specified  in  the  instruction  word  there  is  no  need  to
reconfigure the processor each time a small change is needed. 
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Table 5.8: MAC instruction list

Op Instruction Op Instruction
0000 MUL 1000 Reserved

0001 MADD 1001 Reserved

0010 MSUB 1010 Reserved

0011 Reserved 1011 Reserved

0100 Reserved 1100 Reserved

0101 Reserved 1101 Reserved

0110 Reserved 1110 Reserved

0111 Reserved 1111 Reserved

The Index Reg selects one of the 32 GPR`s in the register file.

The addressing mode decides if the Row offset or the index register, Index
Reg, should be used. Index addressing chooses the Index Reg and the Row
offset is chosen when working with offsets. 

The S/D_Sa field selects one of the eight serial ACR`s (SA`s) that is both the
source and the destination ACR.

The Sreg1 and Sreg2 specify source1 and source2. Each one specifies one of
the 32 GPR`s in the Register File. The Dreg specifies one of the 32 GPR`s as
the destination register. The Sreg1, Sreg2 and Dreg fields are selected when
the register direct address mode is chosen.  

The mS1 and mS2 specify source memory1 and source memory2. The mD
specifies the destination memory.

The S_point1 and S_point2 specify address1 and address2 to the memories.
The  D_point  specifies  the  destination  address.  The  addresses  are  used
together with the mS1,  mS2 and mD to point  to  address spaces in the
selected memories.
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5.5.3 MAC addressing model

The complete addressing for this processor is described in chapter 4. In the
MAC mode, the following is described.

The MAC model of addressing can be seen as an addressing flow graph. This
addressing flow graph is illustrated in figure 5.7. 

First, the MAC instruction word is being read. If the sources with the data
are in the memories, the address is read from the APR and after this the
address  is  updated,  for  the  next  instruction  cycle,  based  on  the
incrementing technique that is currently being used. Next the two sources
containing the data are  determined and accessed. Next the instruction is
being executed and after this, the result is stored. Finally it starts all over
again by reading the next instruction.

Figure 5.7: The MAC addressing flow graph

The available addressing modes for the MAC mode of this processor are
listed in table 5.9. 
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Table 5.9: MAC addressing modes

Code Addressing mode Description
000 Register direct No address

001 Register indirect A <= aprX[15:0] 

010 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

011 Register indirect, 

post decremented by 1 (--)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

100 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + Aux.Reg

101 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (col_offset + row_offset)

110 Register indirect,

post decremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] – (col_offset – row_offset)

111 Reserved -

The MAC also supports addressing with the extended addressing modes that
can be chosen inside the status register, STATUS. The extended addressing
modes  is  used in  conjunction with  the  standard addressing  modes.  The
supported extended addressing modes can be seen in table 5.3.  
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5.6 DMAC

As  mentioned  in  the  MAC  sub-chapter,  it's  often  the  MAC  that  is  the
bottleneck  for  performance.  In  order  to  improve  the  performance,  the
throughput  must  be  increased.  To  increase  the  throughput  the  DSP
processor must run at a higher frequency. While it might seem simple to run
the processor at a higher frequency, this is not the solution because there
are hardware limitations on how fast you can run it.

A completely different approach is to add another MAC unit and divide the
workload  between  the  MAC  units.  In  this  case  the  calculations  can  be
completed in half the time compared to when using only one MAC unit. This
is the chosen  approach in this project.

A dual mac, DMAC, architecture can theoretically improve the performance
by a factor two. However, this is not the case with real world applications
because of problems with the separation of the workload. While it can sound
simple to separate the workload, you can be assured it's not. It's only when
the workload can be totally separated into two identical parts that we can
achieve the two times speed up. In this way the MAC units works completely
individual and in parallel.

Even  if  the  performance  can't  be  improved  by  a  factor  two,  it's  still
preferable to have another MAC unit because of the increased performance.
The improvement is still better than with one MAC unit.  

The DMAC mode can be run simultaneously with the SIMD mode if it uses
only the Register File. This offers a very high parallelism and the greatest
performance that this DSP processor can offer.

5.6.1 DMAC model

In the DMAC mode the two serial data paths of MAC0 and MAC1 are used.
Each serial data path uses two operands of 16 bits each. In this design we
can get four operands in two ways. The first is to access all four memories
at  the  same  time  and  get  one  16-bit  operand  from  each  memory.  The
second is to access four 16-bit GPR`s in the register file. Our register file
supports reading from four different registers at the same time.
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In order to do hardware loops with the MAC`s, the 16-bit data has to be
taken from the memories. The design is not limited to this but it's rather
pointless to use the register file for looping because of the limited space in
it.�

When using register indirect and thus accessing memories, one base address
is taken from one of the eight 16-bit APR`s. All operands uses the same
base address but different memories.  Each serial data path can read two
operands from any of the memories, one operand from each memory. After
the  processing  of  the  operands,  the  two  results  can  be  stored  in  two
memories or in the 40-bit ACR`s in each serial data path. The description of
the address generation unit, AGU, that is responsible for that the correct
addresses is being generated, is described in chapter 4.

When using register direct, four sources are taken from four GPR`s in the
register file. After the processing the results can be stored in two GPR`s in
the register file or in the ACR`s.

If  the results are to be stored in two memories,  this is done by implied
addressing  meaning that  these two are  the  same as  the second sources.
When the two results should be stored in the register file, this is also done
with the use of implied addressing and the two result registers are the same
as the second sources. If the results instead should be stored in the ACR`s,
then one of the eight ACR`s is selected and the results are written to this
ACR in both serial data paths. The source ACR is always the same as the
destination ACR.

The inputs of the serial data paths are 16-bit but internally all computations
are 40-bit in order to provide a high precision of the result.  The 40-bit
results can be rounded, saturated and truncated in order to get the 16-bit
native length at the output.

5.6.2 DMAC instruction word

When designing our model we decided that the DMAC mode should be as
powerful as possible but still flexible enough to be able to run in parallel
with the SIMD mode that is described in sub-chapter 5.7. This forced us to
design the instruction word so that the DMAC supports working with both
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registers and memories. 

When doing hardware loops we must use the memories directly in order to
get  enough  data.  If  the  SIMD  mode  is  used  and  being  looped,  then  all
memories are already busy hence the data must be taken from the register
file instead. The instruction word supports this and gives the opportunity to
use the DMAC mode simultaneously with the SIMD mode. This gives a very
high  parallelism  and  this  results  in  the  best  performance  that  can  be
achieved by this DSP processor.

The  DMAC  mode  have  all  configurable  specifiers  in  the  status  register,
STATUS and the programmable specifiers are in the DMAC instruction word.
The DMAC instruction word can be seen in figure 5.8. The instruction word
separates into two levels illustrated as, one light gray and one dark gray. The
dark gray level is only for the Register direct mode and the light gray level is
only for the Register indirect mode.  
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Figure 5.8: DMAC instruction word

The Type field identifies that this is the DMAC type of instructions. The Op
field  selects  which  instruction  that  should  be  used.  The  supported
instructions  are  listed in table  5.10.  The  “D”  in front  of  all  instructions
specifies that the instruction is of dual type and is performed in the DMAC.
This separates them from the ordinary instructions. As an example, ADD is
for the single MAC, DADD is for the DMAC.
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Table 5.10: DMAC instruction list

Op code Instruction Op
code

Instruction 

00000 DADD 10000 DSHRA

00001 DSUB 10001 BUTFLY (MAC0: ADD, MAC1: SUB)

00010 DMUL 10010 RESERVED

00011 DMADD 10011 RESERVED

00100 DMSUB 10100 RESERVED

00101 DAVG 10101 RESERVED

00110 DMIN 10110 RESERVED

00111 DMAX 10111 RESERVED

01000 DCMPE 11000 RESERVED

01001 DAND 11001 RESERVED

01010 DOR 11010 RESERVED

01011 DXOR 11011 RESERVED

01100 DNAND 11100 RESERVED

01101 DNOR 11101 RESERVED

01110 DSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED

The Pre AM field is a specifier that selects if the base addressing mode is
Register direct or Register indirect. To the Register indirect mode, additional
post changes can be added. The available post changes are selected in the
Post AM field.  These are fully described later in the addressing model of
DMAC.

The OpA0, OpB0, OpA1 and OpB1 each selects one of the four memories.
The  Source  base  address  field  specifies  the  address  that  is  used  for  all
memories. The Dest.base address field specifies the destination address for
OpB0 and OpB1.

The D field specifies if the destination is two memories or two ACR`s. 

The  5-bit  row  offset  in  the  instruction  word  is  combined  with  the
configurable column offset to give a very flexible addressing that is close to
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the table addressing in terms of flexibility.  The possibility to specify the
Row offset directly in the instruction word is very flexible when writing the
assembler  code.  The  Row  offset  can  be  changed  without  having  to
reconfigure the processor.

The Index Reg selects one of the 32 GPR`s in the register file.

The choice between the Row offset and the index register,  Index Reg,  is
decided by the addressing mode. When using index addressing, Index Reg is
chosen and the Row offset is chosen when working with offsets.

The S/D_Sa field selects one of the eight serial  ACR`s (SA`s) that is the
same in both serial data paths. They are both the source and the destination
ACR.

The  SReg0  and  S/DReg0  fields  specify  the  first  and  the  second  source
register in MAC0. Implied addressing is used so the second source is also
the destination register. The registers are any of the GPR`s. The SReg1 and
S/DReg1 is designed identical to the SReg0 and S/DReg0 except that they
applies to MAC1 instead.

5.6.3 DMAC addressing model

The complete addressing for this processor is described in the chapter 4. In
the DMAC mode, the following is described.

If  the addressing mode,  Register indirect,  is  used,  all  four memories are
always used simultaneously. In this case, all memories uses the same base
address but can be separated by the individual offset. 

The DMAC model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.9. 

First, the DMAC instruction word is being read. Next the sources containing
data are determined and accessed. If the sources with the data are in the
memories, the APR is updated based on the incrementing technique that is
currently being used. Next the instruction is being executed and after this,
the results are being stored. Finally it starts all over again by reading the
next instruction.
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Figure 5.9: The DMAC addressing flow graph

The available addressing modes for the DMAC mode of this processor are
listed in table 5.11.  These modes are specified in the instruction word and
requires  both  the  Pre  AM  and  the  Post  AM.  The  individual  offset  is
applicable for all addressing modes.
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Table 5.11: DMAC addressing modes

Pre
AM

Post
AM

Addressing mode Description

0 000 Register indirect, 

no post changes

A <= aprX[15:0] 

0 001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

0 010 Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

0 011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + AuxReg[15:0]

0 100 Register indirect + offset A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

0 101 Register indirect - offset A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

0 110 Reserved -

0 111 Reserved -

1 - Register direct No addresses

The DMAC also supports addressing with the extended addressing modes
that  can  be  chosen  inside  the  status  register,  STATUS.  The  extended
addressing  modes  is  used  in  conjunction  with  the  standard  addressing
modes. The supported extended addressing modes can be seen in table 5.3.  
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5.7 SIMD

In  order  to  speed up media  applications  we have  the  ability  to  use  the
processor in a SIMD mode. SIMD stands for Single Instruction Multiple Data.
Media  applications,  such  as  MPEG  and  JPEG  for  example,  are  very
computational  intensive  and requires  the  processor  to  work  with  a  very
large amount of 8-bit data. In order to address this problem, the processor
have  four  parallel  data  paths  that  are  optimized  for  running  media
applications in parallel. This requires that the 8-bit data are prepared in the
memory as two 8-bit data in one 16-bit space. In this way we can access up
to 8 operands, 64 bits of data in one clock cycle. Up to four computations
can be run in parallel with a four times theoretical speed up in the best case.

The parallel data paths are not limited to 8-bits and can be used in two
configurations, the dual 8-bit mode and the single 16-bit mode. In the dual
8-bit  mode,  the data must be prepared in  the memories but  this  is  not
needed in  the  16-bit  mode.  In  the 16-bit  mode,  multiplications  are  not
supported in the parallel data paths.   

Media applications that requires the processor to work with a large amount
of 16-bit data can be accelerated in the parallel data paths, if the 16-bit
mode is chosen  or in the dual MAC structure. If 16-bit multiplications are
needed then the calculations must be done in the dual MAC structure. The
dual MAC structure will then work as a 16-bit SIMD mode. This mode of
operation is explained in sub-chapter 5.6.

The SIMD mode can be  run simultaneously  with  the DMAC mode if  the
DMAC uses only the register file. This offers a very high parallelism and the
greatest performance that this DSP processor can offer.

5.7.1 SIMD model

In the SIMD mode we only use the four parallel data paths in MAC0 for
acceleration  of  media  applications.  The  parallel  data  paths  are  always
accessing  the memories directly. The register file is never used. The serial
data paths can work in parallel with the parallel data paths as long as they
don't interfere with the memory accesses of the parallel data paths. If the
data is prepared in such a way that the serial data paths can use the register
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file most of the time, while the parallel data paths uses the memories, then a
very high performance could be achieved.

The parallel data paths access the memories through the use of eight 16-bit
address  pointer  registers  for  memory  addresses.  The  description  of  the
address  generation  unit,  AGU,  that  is  responsible  for  that  the  correct
addresses  is  being  generated,  is  described  in  chapter  4. There  is  also  a
possibility to access eight 20-bit accumulator registers for each parallel data
path for saving intermediate results. 

Each parallel  data path can read from any memory in the memory bank
when operating in the 8-bit mode. When operating in the 16-bit mode, each
parallel data path reads one operand from the same memory number as the
data path number and the second operand it can get from any memory. As
an example p_dp0 reads from memory0 and from memory 1, 2 or 3. In this
way we access eight operands with only four sources. When writing to the
memory the memories are divided such that each parallel data path always
write  back  to  the  same  memory  numbers  as  data  path  number.  As  an
example, parallel data path0 writes to memory0. 

The  parallel  data  paths  can  accept  8-bit  or  16-bit  data  as  input,  but
internally all computations have 20-bit precision. The 20-bit results can be
rounded, saturated and truncated in order to get the 16-bit native length at
the output. 

5.7.2 SIMD instruction word

When designing our model we decided that the SIMD mode should be as
flexible as possible. However, this was not possible because of the limitation
of space in the instruction word. The trade off that was necessary to make
was  to  use  a  status  register,  STATUS,  and  instead put  all  our  effort  on
making the addressing as flexible and powerful as possible. The result is
that we can access 16-bit data in any way including any kind of Zig-Zag like
patterns. 

The SIMD instruction word only uses register indirect addressing modes and
is because of this, like in the previous sub-chapters, illustrated as light gray.
The SIMD mode only uses memories and never the Register File.
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The programmable part is put directly into the SIMD instruction word, see
figure 5.10. 
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Figure 5.10: SIMD instruction word

The design for an addressing that is as flexible as possible gives the demand
that  each  data  path  should  be  able  to  read  from  any  memory  with  an
optional offset for the base address source. The addressing modes, AM`s,
for  the SIMD mode are described later  in  this  sub-chapter.  All  available
addressing modes can be found in chapter 4.

The IP field specifies the  Input  Precision and it can be 8 bits or 16 bits.
When the input precision is 8 bits, each 16-bit memory space is seen as 2 x
8 bits operands. 

�
4���������

�
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A 16-bit memory space when IP is 8 bits

When the input precision instead is 16-bit, each 16-bit memory space is
seen in the regular way as a 1 x 16-bit operand.

��
4��������

A 16-bit memory space when IP is 16 bits

The MAO, Memory Access Order, field describes in which order the parallel
data  paths  are  accessing  the  memories  in  the  memory  bank.  It  works
different according to the input precision bit.  

If the input precision bit is 8 bits, then the first 2 bits selects which memory
data path0 should access, the next 2 bits selects which memory data path1
should access,  the  next  2  bits  selects  which memory  data  path2 should
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access and finally the last 2 bits selects which memory data path3 should
access. 

Sometimes  there  might  not  be  a  need  for  all  four  data  paths  in  the
computations. This processor supports the use of one or up to four data
paths. If a data path wants to access a memory that is already accessed by
another data path, then the data path is instead disabled. Some examples for
the 8-bit mode are given in table 5.12.

Table 5.12: Data path enabling via MAO when using the 8-bit mode

MAO
(dp0,dp1,dp2,dp3)

M# M# M# M#

dp
0

dp
1

dp
2

dp
3

 
Description

00 01 10 11 on on on on dp0 access M0, dp1 access M1, dp2 access M2, dp3
access M3 

00 01 10 10 on on on off dp0 access M0, dp1 access M1, dp2 access M2

00 01 10 00 on on on off dp0 access M0, dp1 access M1, dp2 access M2 

00 01 01 10 on on off off dp0 access M0, dp1 access M1, dp3 accessM2 

00 00 00 10 on off off on dp0 access M0, dp3 access M2

01 01 01 01 on off off off dp0 access M1

Some examples for the 16-bit mode are given in table 5.13

Table 5.13: Data path enabling via MAO when using the 16-bit mode

MAO
(dp0,dp1,dp2,dp3)

M# M# M# M#

dp
0

dp
1

dp
2

dp
3

 
Description

00 01 10 11 off off off off All dp`s are disabled

01 10 11 00 on on on on dp0 access M0 & M1, dp1 access M1 & M2, dp2 access
M2 & M3, dp3 access M3 & M0

00 10 10 00 off on off on dp1 access M1 & M2, dp3 access M3 & M0 

The number of used data paths are always checked and if there is a memory,
or more than one, that are not currently being used, the serial data paths
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will be granted access, if needed. 

The D field specifies if the destination is a memory or a parallel accumulator
register, Pa. The source ACR is always the same as the destination ACR. It
was designed in this way to provide easy looping. When a parallel ACR is
selected, it specifies all four ACR`s. If Pa0 is selected this means Pa0 in all
parallel data paths. The accumulation with the ACR`s can be turned off in
the  status  register,  STATUS.  This  is  useful  when  performing  ALU
instructions. 

There is a 5-bit row offset in the instruction word that can be combined
with the configurable column offset to give a very flexible addressing that is
close to table addressing in terms of flexibility. The decision to keep the row
offset in the instruction word is based on that a very a little offset, the row
offset, is used a lot and is really flexible from the programmers point of
view to have in the instruction word.

The choice between the Row offset and the index register, Index Reg, fields
is decided by the addressing mode. When using index addressing, Index Reg
is  chosen and the Row offset  is  chosen when working  with offsets.  The
Index Reg specifies one of the 32 GPR`s in the Register File.

The base address gives an address that are the same in each memory. The
ACR field specifies one of the eight accumulator registers in each parallel
data path. The operation field describes the operations that are supported.
Type is the identification of this instruction word for SIMD operations.

All supported SIMD instructions that uses this instruction word are listed in
table 5.14. The “P” in all instructions stands for parallel and is only there for
differentiating  between  the  standard  ADD. As  an  example,  PADD means
parallel add. There are 15 reserved instructions for future use.

��



Table 5.14: SIMD instruction list

Op Instruction Op Instruction
00000 PADD 10000 PSHRA

00001 PSUB 10001 Reserved

00010 PMUL 10010 Reserved

00011 PSAD 10011 Reserved

00100 PDOT 10100 Reserved

00101 PAVG 10101 Reserved

00110 PMIN 10110 Reserved

00111 PMAX 10111 Reserved

01000 PCMPE 11000 Reserved

01001 PAND 11001 Reserved

01010 POR 11010 Reserved

01011 PXOR 11011 Reserved

01100 PNAND 11100 Reserved

01101 PNOR 11101 Reserved

01110 PSHL 11110 Reserved

01111 PSHRL 11111 Reserved

5.7.3 SIMD Addressing model

The complete addressing for this processor is described in chapter 4. In the
SIMD mode, the following is described.

We are striving to address all four memories if all data paths are enabled,
otherwise as many as possible to drastically increase the performance.

Most of the operations that are provided in the parallel data paths are equal
and usually strongly ordered and it's enough to address only one memory
and use the same address for the others. In this case we will get some line of
data (same address, different banks). For some reasons and special cases it's
possible  to  address  the  other  memories  via  a  memory  offset,  using  the
individual offset.
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Each data path writes data to the address pointed out by the destination
base address or to the destination accumulator register. All data paths have
it's own set of eight ACR`s and it's own memory for writing. The parallel
data path, p_dpX, writes to memory, mX, where X is 0, 1, 2 or 3. In this way,
four  different  values  are  stored  in  the  same  address,  but  in  different
memories. 

The SIMD model of addressing can be seen as an addressing flow graph.
This addressing flow graph is illustrated in figure 5.11. 

First,  the SIMD instruction word is being read. The base address is being
read from the APR and then the APR is updated, for the next instruction
cycle,  based on the incrementing technique  that  is  currently  being used.
Next the four sources containing the data are accessed. Next the instruction
is being executed and after this, the results are stored. Finally it starts all
over again by reading the next instruction. 

Figure 5.11: The SIMD addressing flow graph

The available addressing modes for the SIMD mode of this processor are
listed in table 5.15. These modes are specified in the instruction word. The
individual offset is applicable for all addressing modes.
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Table 5.15: SIMD addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0]

Post A <= aprX[15:0]

001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0]

Post A <= aprX[15:0] + 1

010 Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0]

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0]

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect, 

post incremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] + (col_offset + row_offset)

101 Register indirect, 

post decremented by offset

A <= aprX[15:0]

Post A <= apr[15:0] – (col_offset + row_offset)

110 Reserved -

111 Reserved -

The SIMD also supports addressing with the extended addressing modes
that  can  be  chosen  inside  the  status  register,  STATUS.  The  extended
addressing  modes  is  used  in  conjunction  with  the  standard  addressing
modes. The supported extended addressing modes can be seen in table 5.3.  
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5.8 PROGRAM FLOW

In order to control the instruction flow in the program memory of the DSP
processor,  program  flow  instructions  are  needed.  The  program  flow
instructions  are  responsible  for  jumping  to  addresses  in  the  program
memory and,  in the case of a a subroutine jump, also the return to the
address before the jump. The repeat instruction, for making hardware loops,
is also a program flow instruction.

There is not much improvements that can be done in the program flow in
order  to  increase  the  executional  performance.  We  instead  made  the
program flow as simple and easy to use as possible. 

5.8.1 Program flow model

The program flow instructions affects the program counter, PC, in the 64kW
program memory.  They simply control in what order the instructions are
being executed. 

There are three different types of jumps. The first is the ordinary jump that
jumps to a new program memory address. The second is a conditional jump
that is executed only if the condition is fulfilled. The third is a subroutine
jump which executes in the same way as the ordinary jump except that the
internal statuses of the processor are saved. The address is pushed to a PC
stack and this stack is then pulled when the return instruction occurs.

Most DSP processors have a repeat instruction and a loop instruction. While
these instructions are very similar in their executions, we have designed a
simple  repeat  instruction that  supports  both repeating  and looping.  The
repeat instruction take two arguments as input, the number of instructions
that should be repeated and  the number of loops that should be performed.
This  results  in  only  one  repeat  instruction  that  is  as  easy  to  use  for
repeating one instruction as it is to repeat multiple instructions and provide
a hardware loop.
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5.8.2 Program flow instruction word

The  instruction  word  is  designed  to  be  simple  but  still  as  flexible  as
possible. 

The Type field identifies that this is the Program flow instruction word. The
Op field specifies the instruction. 

The Addr and the GPR field are simple switches that specify if the Address
field or the GPR field in the instruction word should be used. The address
field specifies an 16-bit immediate address for immediate execution. The
GPR field specifies one of the 32 GPR`s and inside that register, there is a
16-bit address.

The  nr_of_instr,  number  of  instructions,  field specifies  how  many
instructions that should be repeated when using the repeat instruction. The
maximum number of instructions that can be repeated are 27.

The nr_of_loops, number of loops, field specifies how many loops that the
number of instructions, that are given by nr_of_instr,  should be repeated
when using the repeat instruction. The maximum number of loops that are
supported are 216.

The Program flow instruction word is in figure 5.12.
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Figure 5.12: P_FLOW instruction word

When  using  conditional  execution,  we  don't  have  a  condition  field  but
instead  have  different  instructions  for  different  conditions.  These
instructions only executes if the condition is fulfilled. 

The supported instructions are listed in table 5.16.

�	



Table 5.16: P_FLOW instruction list

Op Instruction Op Instruction
0000 JMP 1000 JNC

0001 JGT 1001 JO

0010 JGTE 1010 JNO

0011 JLT 1011 CALL

0100 JLTE 1100 RTS

0101 JE 1101 RPT

0110 JNE 1110 RESERVED

0111 JC 1111 RESERVED

A description of each conditional instruction can be seen in table 5.17.

Table 5.17: Description of the conditional instructions
JGT Jump if greater than JNE Jump if not equal

JGTE Jump if equal or greater than JC Jump if carry out is set

JLT Jump if less than JNC Jump if carry out is not set

JLTE Jump if equal or less than JO Jump if overflow

JE Jump if equal JNO Jump if not overflow
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6
Assembler Design

6.1 Preview

When  the  structure  of  the  instruction  set  is  defined  it's  time  for  its
implementation and verification. It is a very important part of the processor
design flow because it shows if the specification requirements are fulfilled
or not. The task is in the translation of the input code (assembly code) to the
hexadecimal machine code suitable for this processor. For some reasons this
process could be named a compiler design. This chapter is aimed not only
on the detailed description of this compiler but also on the tools that have
been used during implementation. According to the design specification we
have followed the IEEE STD 649-1985 standard to design the assembly code
format.

6.2 Tools Description 

To design the language translator of assembly code to hexadecimal code we
have chosen the LEX & YACC tools. The language translator is a program
which translates programs that are  written in a source language into an
equivalent  program  in  an  objective  language.  In  our  case  the  source
language is the designed assembly code, the object language is the machine
code  of  an  actual  processor.  From  the  pragmatic  point  of  view,  the
translator  defines  the  semantics  of  the  source  language,  it  transforms
operations  specified  by  the  syntax  into  operations  of  the  computational
model, into binary control code in our case. Then, the simulator which has
been  written  especially  for  this  reason,  will  read  this  binary  code  and
generate the corresponding control signals. For a detailed description of the
designed instruction set simulator, refer to chapter 7 of this document.
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We have designed a compiler, a translator with a source assembly code and
with  the  object  machine  binary  code.  The  typical  compiler  consists  of
several stages:

� The lexical stage (so-called scanner) groups characters into lexical units
or tokens. The input to the lexical stage is a character stream, and the
output is the stream of tokens. Regular expressions are used to define
the tokens recognized by the scanner. The scanner is implemented as a
finite state machine. Lex is a tool for generating scanner. In this work we
have used FLEX, it's a fast version of Lex, working within GNU. They are
absolutely  identical  from the  coding  point  of  view.  Here  and  after  all
references will be on the Flex tool. 

� The parser stage groups tokens into syntactical units. The output of the
parser  is  a  parse  tree  representation  of  the  program.  Context-free
grammars  are  used  to  define  the  program  structure  recognized  by  a
parser. The parser is implemented as a push down automate [5]. Yacc is a
tool that generates the parser. Same as with the Flex we have used the
accelerated version of the Yacc tool. Here we have BISON tool. Bison tool
is working withing the GNU too. We will refer here and after to Bison tool.

� The semantic analysis stage analyze the parse tree for  context-sensitive
information and generates an output as an annotated parse tree. During
the parsing, information concerning variables and other objects is stored
in the so-called symbol tables.

� The code generator stage transforms the annotated parse tree into object
code using rules which denote the semantics of the source language.

� Finally, build-in optimizers examine the object code for some dependent
machine improvements. 

By  using Flex  & Bison it's  becoming  much easier  to  design the  required
compiler. During the design of the assembler we tried to do it in a way that
would be as easy as possible for fast and simple changes in the assembler
structure. These changes can take place in the future during the debug and
verification stages of the instruction set. The compiler design flow is shown
in figure 6.1.
 

��



Figure 6.1: Compiler design flow diagram

Both Flex and Bison programs should be written in parallel. And of course
should use the same variables. Both these programs are generators of the
C++ code. First, the code that has been written in the Yacc shell (bison.ypp)
should be passed through Bison tool. It generates two files, the c++ code for
the parser – bison.tab.cpp and the header file which consists of all tokens
description for the Flex tool – bison.tab.hpp. Second, the code that has been
written in the Lex shell (scanner generator: flex.l) according to the bison's
header  passes  through  the  Flex  tool,  as  a  result  the  lex.yy.cpp  file  is
generated.

Then, both these automatically generated files should be compiled (we used
g++ compiler)  to  get  the  output executable  file  which is  itself  the final
Assembler.  For a more detailed description of the compiler design please
refer to complete Lex & Yacc manual by John R. Levine [6].
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6.3 Assembler Design Flow

For clear understanding of the Assembler design process take a look at the
flow chart diagram shown in figure 6.2. According to the compiler design
strategy the parser and the scanner source codes have been generated. A
number  of  auxiliary  files  are  also  existed.  There  are  the  headers  and
functions  description  libraries  for  the  instructions  and  for  the  auxiliary
functions to perform computations, input/output, debugging. 

Figure 6.2: Assembler Design Flow

��

2��0 "����

���)� ���)���

�::

�������

������
�����

������
���
�����


����

/��

����
������;

<�

=��

=��

=��

=��



6.4 Assembler Features

During the research we have found that it's really necessary to design such a
flexible structure and processor architecture as possible. A lot of problems
and troubleshooting have occurred during this design stage. For example
the assembler  design causes many problems with  the sizing  of  the data
fields in the instruction words, some structures or ideas could not even be
implemented because of the coding style. With increasing of experience in
the  instruction  set  design  we  had  to  change  some  of  the  already
implemented and workable parts. The additional trouble causes the fact that
we have to verify both scanner and parser at the same time and some design
ideas  even  were  canceled,  only  because  of  an  unideal  code  style.  For
example, the limitation of number of specifiers in the instruction word. 

The final version of the scanner/parser code is really open for adding extra
specifiers into the instruction word or whatever the programmer or designer
wants. The main idea is in simplicity of the scanner code. Now there are only
three main structures in the assembly code to detect (to scan). They are a
“number”, an “identifier” and a “char”. Actually, we do not need any more
and can describe any of the assembler specifiers:

� label – is an identifier specified strongly in the beginning of the assembly
line, for example:
loop
begin

� mnemonic   –   is  a  possible  identifier  like  add,  and,  or  nop.  These
identifiers must not be in the begin of the line

� argument – could be described with the help of an identifier structure or a
number structure

� flag - is a possible identifier. They have not been used in this instruction
set, but it's possible to implement them

� immediate  data  –  is  a  number  structure  of  data,  possible  to  be
represented via the decimal, binary, octal, or hexadecimal format:
15, '1111', 'F'

��



� any other characters

The rest computations and allocations of the data are made with the help of
support  functions.  Data  are  taken  from  the  symbol  tables  and  the
instruction description header does also exist. This makes the future work
with this scanner/parser much easier for updating and for changing.

6.5 Results

To show the abilities and relative advantages of this processor three types of
instructions  have  been implemented for  compilation,  MOVE instructions,
Program  Flow  instructions,  and  SIMD  instructions.  The  rest  types  of
instructions unfortunately have not been implemented yet because of the
time  deficit.  But  this  set  of  implemented  instructions  let  us  check  and
simulate this processor using the SIMD data paths. 

As a result of compilation the output (for instance “input.hex”) hexadecimal
file is generated if  there were no errors or warnings. The Instruction Set
Simulator is getting the hex file and doing its job.
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7
Instruction Set Simulator

7.1 Preview

The simulator model is an instruction set simulator, ISS, and is implemented
in C++. This programming language was chosen because it's widely taught
and understood. It's easy to work with and good results can be achieved
pretty fast. If any questions occurs, it's always easy to find the answers in
books and on Internet because C++ is so widely spread and used that there
are always  somebody else before you that have had the same problems.
However, there might be better to use another programming language that
has  better  support  for  binary programming because this  is  C++ biggest
flaw. 

The task of the ISS is to read 32-bit binary instructions from the program
memory, disassemble them to a readable form, execute the instructions and
do  any  post  processing  such  as  writing  back  results.  Finally  the  next
instruction is being read from the program memory and it starts all over
again.

All processing cycles are counted and are printed to the screen in the end.
The ISS counts program cycles and executional cycles that takes the pipeline
into account. This is useful for benchmarking different simulator programs
such as FIR, DCT, FFT as some examples.  

7.2 Simulator Model

The  ISS  can  copy  hex  files,  that  is  generated  by  the  Assembler,  to  the
program memory. It can copy it to any memory address inside the program
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memory. The ISS converts the hex code in the hex files to the binary format
that  the  program memory needs.  It  can then execute  all  or  as  as  many
program memory lines as the user wants. Every program memory line is a
new  instruction.  All  the  binary  instructions  are  disassembled  and  the
instructions are printed to the screen. The ISS also has a Debug mode for
debugging. When it's used, the instructions are executed one at a time and
the result after each execution is printed to the screen. 

A more detailed description of each step in the ISS is described in sub-
chapters 7.3, 7.4 and 7.5.

7.3 The Start Procedure

When the ISS starts it will provide the user with three options. The first is to
load a file to the program memory, the second is to execute the instructions
in the program memory and the third is to quit the simulator program. The
start procedure is shown in figure 7.1.

       

                                
Figure 7.1: The start procedure of the ISS
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7.4 The Load Procedure

When load is selected, the user have to start by typing in the filename of the
hex file that should be copied to the program memory. If the hex file is not
in the working library, the complete reference to it must be specified. As an
example,  c:/folder1/folder2/file.hex  loads  the  file.hex.  If  the  file  doesn't
exist, there is a choice to either quit or try again. When the file is found, the
program asks how many lines of code that should be copied and to what
start address in the program memory. In this way more programs can be
copied to the program memory without overwriting any previous programs.
After finishing the copying of the hex file, the ISS automatically chooses the
execute option. The load procedure is shown in figure 7.2.

Figure 7.2: The load procedure
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7.5 The Execute procedure

When executing the ISS, the user must enter where, in the program memory,
the test program is. The ISS provides the user with three options for doing
this. 

The first is to only enter how many instruction lines in the program memory
that should be executed. With this option the ISS will start reading from the
beginning, at address zero. If zero is typed as the number of instructions,
then all instructions in the program memory will be executed. 

The second choice is very similar to the first one. Here the user also must
specify how many instruction lines that should be executed but this time a
start address must also be given.  This gives the possibility to start from
anywhere in the program memory. 
The third option is even more flexible.  Here the start address and a end
address must be given. The ISS then executes all instructions between, and
including, the start and the end addresses.

Before reading the instructions in the program memory the ISS asks the user
if the debug mode should be used. If the debug mode is used, there is a
choice between executing one instruction at a time or executing all. When
executing  one instruction at  the time,  the  user  have  the  choice  between
continue or quit after each instruction. The results after the executions are
only printed to the screen in the debug mode.

Finally when all decisions are made, the ISS starts simulate. First, it reads
the first  instruction line, decodes and disassembles it.  The disassembled
instruction is printed to the screen. If the instruction is not a branch, the
correct addresses is being generated, the sources collected, the operation is
executed and the results are written back.  If  the instruction is a branch,
there are two possible scenarios. The first  is that the branch is not taken
and in  this  case the execution continues  as usual.  The other  is  that  the
branch is taken and in this case, the new branch address is generated and
the program will jump to this in the next simulator cycle. If it's a subroutine
jump, the internal status is saved.

When  continuing,  the  cycle  counter  and  the  program  counter,  PC,  are
updated.  The program counter now points at the next  instruction in the
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program memory. It  all starts over again by reading the next instruction.
After each simulator cycle, the ISS checks if it was the last instruction that
was executed. If this is the case, then the final result and the number of
cycles are printed to the screen.

The executing procedure can be seen in figure 7.3.
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Figure 7.3: The execute procedure

	�

Execute

Enter:
1. #instr. to execute
2. Start PM address and #instr. to execute
3. Start PM address and end PM address

1 or 2?

Enter #instr.

Yes
Enter start address

3?

Enter end address

No

Debug mode?

Debug?
Yes

One instr. at a time?

Read a PM line

Decode

Disassemble

Branch?
Yes

New PC

Execute (Generating 
addresses, compute, 
writing results etc.)

Taken?

PC=PC+1

Yes

Cycle counter

     One
  instr. at a 
     time?

Show results
Yes

Continue?

Continue?

Last instr.?Show results
Yes

Yes

Show cycles

Quit



7.6 Results

When designing the simulator it  was discovered that some of the design
steps was hard to implement and some could not be implemented at all.
This forced us to redesign the instruction set many times. It  might have
been better to start designing the simulator earlier in the project instead of
in the end in order to find the design mistakes at an earlier stage.

Only MOVE, SIMD and P_FLOW was implemented in the simulator. This was
because of the time limit of this project. However, it might have been better
to implement some other instruction types instead because the SIMD mode
is designed for accelerating of media applications and is not so useful for
some  of  the  standard  algorithms  that  the  competitors  use  for
benchmarking. In this way, it's quite hard to compare this DSP processor to
the  competition.  In  those  cases  that  we  were  able  to  benchmark  this
processor in the same way as the others the performance was impressive.
More about the benchmarks is in chapter 8.
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8
Benchmarking

8.1 Preview

Benchmarking is used for revealing strength and weakness of the processors
in certain applications. And now, when the instruction set simulator is ready
to use, we can check our processor architecture and the instruction set for
reaching the specification requirements. The only way of checking is to write
some special programs (assembly code) for this processor. As a result of
passing this program through the ISS, the number of expended clock cycles
are counted.

8.2 Benchmarking Strategy

The designed MDSP processor  was aimed at  media  data processing.  The
most popular and often used media algorithms are JPEG, MPEG and MP3.
According to the designed processor architecture we have SIMD data paths,
and single MAC data paths. In order to speed up the benchmark processing,
the Dual MAC mode is also used.

The SIMD data paths should be used for eight-by-eight bit multiplication
loops algorithms, for calculating vector DOT multiplication product (motion
compensation  stage  of  a  MPEG)  or  for  calculating  “sum  of  absolute
differences” product (motion estimation stage).

DMAC  hardware  is  used  for  those  algorithms  that  use  the  sixteen-by-
sixteen bit multiplication loops. 
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Any algorithm can be realized with the defined level of precision. Of course
we can launch 8-bit media data in the SIMD for calculating FFT benchmark
and get a good result in terms of clock cycles. But in this case we will loose
precision.  For  high  colors  applications,  like  a  10-12  bits  per  pixel  for
example,  programmer  should  use  the  DMAC  hardware  and  write  the
corresponding assembly code. This processor let us make this choice.

8.3 Results

Unfortunately we did not implement all above algorithms in the designed
instruction  set,  and  therefor  can't  answer  clear  about  the  processor
performance, because of the lack of the DMAC instructions. This research
work had only 20 weeks length and we did not have time for implementing
the FFT and the DCT benchmarks. We propose these activities for future
works with this processor.

We just want to show the abilities of four SIMD parallel data paths structure
in the Real Single Sample FIR benchmark. See the comparisons in table 8.1:

Table 8.1: FIR benchmark

Benchmark / Vendor BDTI avg. MDSP
Real Single Sample FIR-16,  #cycles 22 20(11)

The full cycle cost of the benchmark is 20. The core part (calculations and
storing the result) takes only 11 cycles. The rest nine cycles have been spent
for moving of data and configure the processor.
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9
Conclusions

This chapter presents the results and the conclusions from the project and
summarizes all designers ideas for future changes and improvements. 

9.1 Results

From the beginning of this final year project we aimed for designing a high
performance DSP with accelerated media functions. We soon realized that
this was impossible with the limited time that was offered. We decided to
focus on the SIMD part of the design and all our results are based on this.

In  fact,  we  have  designed  the  processor's  core  according  to  a  given
specification. We have researched the possibility's for hardware accelerating
of  media DSP applications. The complete instruction set for the designed
processor  is  presented  in  this  work  (except  interrupts  handling).  The
instruction set simulator was designed only for SIMD parallel computational
paths of the processor. We have stopped at the benchmarking design step
due to lack of time and have not completely verified our architecture and
instruction set. That is why we can't release the performance results and can
only expect them according to our research efforts.

The  designed  processor  should  show  good  performance  for  8/16-bit
convolution  based  algorithms.  The  motion  estimation  and  compensation
(MPEG)  applications  should  also  be  solved  very  well  because  of  the
architectural  improvements  made  especially  for  them.  The  designed
addressing models gives the opportunity to process the multidimensional
media algorithms with a high-level of flexibility of the data accesses.
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The high level of orthogonality of the instruction set and the architecture
gives  the  designers  the  possibility  of  using  all  available  (6!!!)  data  paths
simultaneously. In this way, six different results are calculated at the same
time,  four  loop  results  to  the  memories,  and  two  auxiliary  register
operations.

The SIMD parallel  data paths can process 8-bit media data with a great
performance for non high-quality color applications, up to five significant
bits  per  pixel.  To  process  data  with  high-quality  colors,  programmers
should use the DMAC mode.

In addition, the sophisticated ALU unit offers the possibility to speed up the
execution of logic, arithmetic, and shift operations.

The designed instruction set is quite flexible for future improvements and
changes.

9.2 Future work and improvements

All incomplete issues and activities for this processor should be finished in
order to release the core. Completing the architecture and implementing it
in RTL code with a following verification.

In the SIMD part, the memory accessing could be changed for a more flexible
way to address data. In our design, when working with 8-bit data, we store
two operands  in each memory line.  However this  is not  good for some
applications where we have to multiply the data with coefficients as in FFT,
FIR for example. It would be better if we could access two 8-bit operands
from different memories instead. In this case we could use two memories
that contains the data and the other two can contain the coefficients. If this
is done and we use modulo addressing on the coefficient memories, then
the performance of coefficient based applications can be greatly improved. 

In  our  research  we  did  not  pay  attention  on  the  interrupts  handling.
Interrupts of course are necessary for proper processor's exploitation. The
direct  memory  access  (DMA)  unit  could  significantly  improve  the  total
processor  performance  due  to  data  memory  accesses  are  always  the
bottleneck. 
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A.1
Serial data path

Serial data path architecture is shown on the figure at the next page.

Symbol description:

SE – sign extension block
G – guard bit extension block
S/U – signed/unsigned data switch
P – pipeline register
F/I – fractional/integer data switch
MX – multiplexer
SAT – saturation arithmetic block
LSB – least significant bit
Op�>�4�"�?��������
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A.2
Parallel Data Path

Parallel data path architecture is shown on the figure at the next page.�

Symbol description:

P_MUL[0-3] – multiplication block, identical to serial data path
P_SHIFT[0-3] – shift block, identical to serial data path
P_Post Processing[0-3] – guard bit extension block
MX – multiplexer
Op[0-3] -operands
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B.1
A guide to the instruction set
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Descriptions that are the same for all instruction types

Field descriptions

Syntax Description
Type The instruction type

OP The operation code

AM Addressing mode selection

mS, mD Memory source and memory destination. Selects M0-M3

S_point, D_point Source pointer and destination pointer. Selects APR0-APR7

SReg, DReg Source register and destination register. Selects GPR0-GPR31

S_ACR, D_ACR Source and destination accumulator. Selects ACR0-ACR7

ImmX X-bit immediate data or X-bit immediate address

Instruction TYPE list

Type Instruction Notes
000 MOVE Load/store data to/from memories 

001 ALU ALU instructions for the 16-bit serial data path only

010 MAC MAC instructions for the 16-bit serial data path only

011 DMAC Two 16-bit serial data paths

100 SIMD Four 8-16-bit parallel data paths 

101 P_FLOW Program Flow instructions

110 RESERVED Reserved type for future use

111 RESERVED Reserved type for future use

Memory selection

mS/mD Memory Description
00 0 Memory 0 in the memory bank

01 1 Memory 1 in the memory bank

10 2 Memory 2 in the memory bank

11 3 Memory 3 in the memory bank
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The Status register, STATUS
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Status register, STATUS

Description of the STATUS fields

Rnd & Truncate

Code Description
00 No round & truncation

01 Round & truncate to 8-bits

10 Round & truncate to 16-bits

11 Reserved

Sat

Code Description
0 Saturation mode is off

1 Saturation mode is on

Signed/Unsigned

Code Source1 Source2
00 unsigned unsigned

01 unsigned signed

10 signed unsigned

11 signed signed
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Integer/Fractional

Code Description
0 Fractional mode

1 Integer mode

Saturation/Carry

Code Description
0 Carry arithmetic

1 Saturation arithmetic

Extended AM (applies to ALL addressing modes)

Code Addressing mode Description
00 Not used No extended addressing mode

01 Bit Reversed Addressing Bit Reversed Addressing

10 Modulo addressing Modulo addressing

11 Memory indexing addressing Table addressing

ACR

Code Description
0 Accumulation mode off

1 Accumulation mode on
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TABLE

Code
Column Row

Description
(Table registerX=TrX)

Code
Column Row

Description
(Table registerX=TrX)

00 00 Tr0/Tr0 specifies the
Column/Row offset 

10 00 Tr2/Tr0 specifies the 

Column/Row offset

00 01 Tr0/Tr1 specifies the
Column/Row offset

10 01 Tr2/Tr1 specifies the 

Column/Row offset

00 10 Tr0/Tr2 specifies the
Column/Row offset

10 10 Tr2/Tr2 specifies the 

Column/Row offset

00 11 Tr0/Tr3 specifies the
Column/Row offset

10 11 Tr2/Tr3 specifies the 

Column/Row offset

01 00 Tr1/Tr0 specifies the
Column/Row offset

11 00 Tr3/Tr0 specifies the 

Column/Row offset

01 01 Tr1/Tr1 specifies the
Column/Row offset

11 01 Tr3/Tr1 specifies the 

Column/Row offset

01 10 Tr1/Tr2 specifies the
Column/Row offset

11 10 Tr3/Tr2 specifies the 

Column/Row offset

01 11 Tr1/Tr3 specifies the
Column/Row offset

11 11 Tr3/Tr3 specifies the 

Column/Row offset
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Type1: MOVE instructions (000)
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MOVE instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the MOVE instruction word

Field Description
S/D BRM: Selects if the source is a GPR (00), a serial ACR (01), 

         a parallel ACR (10) or a memory (11)

LD:   Selects if the destination is a GPR (00), a APR (01) or 

         a memory (10).

CLA: Selects if the accumulator is a serial accumulator in MAC0 (00), 

         a serial accumulator in MAC1 (01), both serial accumulators (11)

         or all four parallel accumulators (10) 

AM Selects the addressing mode. Only for memory instructions.

Index Reg Selects one of the 32 GPR`s when using Index addressing
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MOVE instruction list

Op Instruction Description
000 NOP No Operation

001 BMM Between Memory and Memory

010 BRM Between Register and Memory

011 BRR Between Register and Register

100 SWP SWaP data between registers

101 CLA CLear Accumulator

110 LD LoaD to register or memory with immediate data

111 Reserved  -

MOVE addressing modes

AM Addressing mode Description
000 Register indirect A <= aprX[15:0] 

001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

010 Register indirect, 

post decremented by 1 (--)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (column + row offset)

101 Register indirect, 

post decremented by offset

A <= aprX[15:0] 

Post A <= aprX[15:0] – (column + row offset)

110 Reserved -

111 Reserved -
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Type 2: ALU (001)
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ALU instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the ALU instruction word
S/D_Sa Selects one of the eight serial ACR`s in the serial data path of MAC0. It

specifies both the source and the destination.

S/D_point The destination APR. 

It's also the source when working with immediate data

Logic Selects a logic instruction

Arithmetic Selects a arithmetic instruction

Shift Selects a shift instruction

The LOGIC instruction list

Op Instruction Op Instruction
000 NOP 100 NOT

001 AND 101 NOR

010 OR 110 NAND

011 XOR 111 Reserved
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ARITHMETIC  instruction list

Op Instruction Op Instruction
00000 NOP 10000 Reserved

00001 ADD 10001 Reserved

00010 SUB 10010 Reserved

00011 INC 10011 Reserved

00100 DEC 10100 Reserved

00101 MIN 10101 Reserved

00110 MAX 10110 Reserved

00111 ABS 10111 Reserved

01000 SUBABS 11000 Reserved

01001 ABSSUB 11001 Reserved

01010 ADDABS 11010 Reserved

01011 ABSADD 11011 Reserved

01100 AVG 11100 Reserved

01101 CMPE 11101 Reserved

01110 NEG 11110 Reserved

01111 Reserved 11111 Reserved

SHIFT  instruction list

Op Instruction Op Instruction
000 NOP 100 Reserved

001 SHRA 101 Reserved

010 SHRL 110 Reserved

011 SHL 111 Reserved
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ALU addressing modes

AM Addressing mode Description
000 Register direct No address

001 Register direct 

with immediate data

No address

010 Register indirect A <= aprX[15:0] 

011 Register indirect 

with immediate data

A <= aprX[15:0] 

100 Register direct, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

101 Register direct, 

post decremented by 1 (--)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

110 Register direct, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (column + row offset)

111 Register direct, 

post decremented by offset

A <= aprX[15:0] 

Post A <= aprX[15:0] – (column + row offset)
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Type 3: MAC instructions (010)
    

3

Type

4

Op

3

AM

2

D

5
Index Reg

5              SReg1 5
SReg2

5
DReg

                      
Row offset

2
mS1

3
S_point1

2
mS2

3
S_point2

2
mD

3 D_point

S/D_SA

MAC instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes

Additional field descriptions for the MAC instruction word
D Destination selection. (00) selects Dreg, (01) selects mD, Dpoint and (10)

selects the S/D_ACR

S/D_SA Selects one of the eight ACR`s in the serial data path of MAC0. It specifies
both the source and the destination.

MAC instruction list

Op Instruction Op Instruction
0000 MUL 1000 Reserved

0001 MADD 1001 Reserved

0010 MSUB 1010 Reserved

0011 Reserved 1011 Reserved

0100 Reserved 1100 Reserved

0101 Reserved 1101 Reserved

0110 Reserved 1110 Reserved

0111 Reserved 1111 Reserved
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MAC addressing modes

AM Addressing mode Description
000 Register direct No address

001 Register indirect A <= aprX[15:0] 

010 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

011 Register indirect, 

post decremented by 1 (--)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

100 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + Aux.Reg

101 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (col_offset + row_offset)

110 Register indirect,

post decremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] – (col_offset – row_offset)

111 Reserved -

���



Type 5: Dual MAC instructions (011)
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DMAC instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only

The fields are used with both Register direct and Register indirect addressing modes
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Additional field descriptions for the DMAC instruction word
Pre AM Selects if addressing mode is Register indirect (0) or Register direct (1) 

Post AM Selects the post changes for Register indirect 

OpA0 Selects one of the four memories that
gives Operand A for MAC0 

OpB0 Selects one of the four memories that
gives Operand B for MAC0

OpA1 Selects one of the four memories that
gives Operand A for MAC1

OpB1 Selects one of the four memories that
gives Operand B for MAC1

OpXY selects one of the four memories
and together with the base address, that
is  the  same  for  all  memories,  four
operands  are  given.  The  operands  are
taken from four different memories.

D Selects if the destination is a memory (0) or an accumulator register (1) when
using Register indirect

S/D_SA Selects one of the eight serial ACR`s (SA`s) that is both the source and
destination when ACR is turned on in the status register, STATUS 

SReg0 Selects one of the 32 GPR`s that is the source 1 for MAC0

S/DReg0 Selects one of the 32 GPR`s that is the source 2 for MAC0. 

When implied addressing is used, this is also the destination  

SReg1 Selects one of the 32 GPR`s that is the source 1 for MAC1

S/DReg1 Selects one of the 32 GPR`s that is the source 2 for MAC1. 

When implied addressing is used, this is also the destination  

���



DMAC instruction list

Op Instruction Op Instruction 
00000 DADD 10000 DSHRA

00001 DSUB 10001 BUTFLY (MAC0: ADD, MAC1: SUB)

00010 DMUL 10010 RESERVED

00011 DMADD 10011 RESERVED

00100 DMSUB 10100 RESERVED

00101 DAVG 10101 RESERVED

00110 DMIN 10110 RESERVED

00111 DMAX 10111 RESERVED

01000 DCMPE 11000 RESERVED

01001 DAND 11001 RESERVED

01010 DOR 11010 RESERVED

01011 DXOR 11011 RESERVED

01100 DNAND 11100 RESERVED

01101 DNOR 11101 RESERVED

01110 DSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED
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DMAC addressing mode

Pre
AM

Post
AM

Addressing mode
(Individual offset is applicable for all

AM`s)

Description

0 000 Register indirect, 

no post changes

A <= aprX[15:0] 

0 001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

0 010 Register indirect, 

post decremented by 1 (––)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

0 011 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + Index Reg[15:0]

0 100 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (col_offset + row_offset)

0 101 Register indirect, 

post decremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] – (col_offset + row_offset)

0 110 Reserved -

0 111 Reserved -

1 - Register direct No addresses
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Type 6: SIMD instructions (100)
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SIMD instruction word

Color description
The fields are used with Register direct only

The fields are used with Register indirect addressing modes only*

The fields are used with both Register direct and Register indirect addressing modes

*The SIMD mode only supports Register indirect addressing modes

Additional field description for the SIMD instruction word
IP Selects if the Input Precision (IP) is 8-bit (0) or 16-bit (1)

D Selects if the Destination (D) is a memory(0) or an ACR(1)

MAO Memory Access Order. See description in the table below

Memory Access Order, MOA (M0=00, M1=01, M2=10, M3=11)

Input Precision is 8-bit (IP=0) Input Precision is 16-bit (IP=1)
Data
path0

Data
path1

Data
path2

Data
path3

Data
path0

Data
path1

Data
path2

Data
path3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 or
M1 or
M2 or

M3

M0 and
M1 or
M2 or

M3

M1 and
M0 or
M2 or

M3

M2 and
M0 or
M1 or

M3

M3 and
M0 or
M1 or

M2
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SIMD instruction list

Op Instruction Op Instruction 
00000 PADD 10000 PSHRA

00001 PSUB 10001 RESERVED

00010 PMUL 10010 RESERVED

00011 PSAD 10011 RESERVED

00100 PDOT 10100 RESERVED

00101 PAVG 10101 RESERVED

00110 PMIN 10110 RESERVED

00111 PMAX 10111 RESERVED

01000 PCMPE 11000 RESERVED

01001 PAND 11001 RESERVED

01010 POR 11010 RESERVED

01011 PXOR 11011 RESERVED

01100 PNAND 11100 RESERVED

01101 PNOR 11101 RESERVED

01110 PSHL 11110 RESERVED

01111 PSHRL 11111 RESERVED
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SIMD addressing modes

AM Addressing mode
(Individual offset is applicable for all

AM`s)

Description

000 Register indirect A <= aprX[15:0] 

001 Register indirect, 

post incremented by 1 (++)

A <= aprX[15:0] 

Post A <= aprX[15:0] + 1

010 Register indirect, 

post decremented by 1 (--)

A <= aprX[15:0] 

Post A <= aprX[15:0] – 1

011 Index addressing A <= aprX[15:0] 

Post A <= aprX[15:0] + Index Reg[15:0]

100 Register indirect, 

post incremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] + (col_offset + row_offset)

101 Register indirect,

post decremented by offset

A <= aprX[15:0] 

Post A <= apr[15:0] – (col_offset + row_offset)

110 Reserved -

111 Reserved -
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Type 7: Program flow instructions (101)
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16
Address 

11
Unused

5
GPR

16
nr_of_loops

P_FLOW instruction word

Additional field descriptions for the P_FLOW instruction word 

Addr Selects the address field (1) as destination 

GPR Selects the GPR field (1) as destination

nr_of_loops The number of loops the instructions should be repeated when using
the RPT instruction

nr_of_instr The number of instructions that should be repeated when using the
RPT instruction

P_FLOW instruction list

Op Instruction Op Instruction
0000 JMP 1000 JNC

0001 JGT 1001 JO

0010 JGTE 1010 JNO

0011 JLT 1011 CALL

0100 JLTE 1100 RTS

0101 JE 1101 RPT

0110 JNE 1110 RESERVED

0111 JC 1111 RESERVED
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B.2
Instructions Description

This is the full description of all instructions for the processor. There are six
instruction types in  the set.  We have  collected instructions  according  to
their alphabetical order. The description includes the following fields: 

• Type  of  instruction  –  gives  the  short  instruction  description  and
points on the instruction functional group.

• Syntax – shows how the assembly code looks like
• Operands – what are the data sources
• Execution – what the instruction does
• Description  –  flags  updating,  functional  description,  any  other

comments
• Example – execution example

Symbol description

(a|b| ) – a or b or nothing
( ) – optional parameter is inside these brackets
m(aprX)_Y – the data pointed by aprX in the memory bank Y
h’xxxx’ – hexadecimal data representation
b’xxxx’ – binary data representation
i/f – integer/fractional data representation
s/u – signed/unsigned data representation
d – register direct addressing
di – register direct with immediate data
i - register indirect addressing
ii – register indirect with immediate data
ppo/pmo - register indirect plus/minus offset addressing

���



ABS

Type of instruction:
ALU instruction. Absolute value, serial data path.

Syntax:
abs am, rS1, (rS2), rD
abs am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 -> abs(S1)

Description:
The instruction returns the absolute result from a 16-bit signed operand,
the result is placed into the memory, or into the register, selected by the
addressing mode. The flags are updated.

Example:
abs pinc, 1,apr3, 0,apr0

Operand Before After

apr3 h’000F’ h’0010’
m(apr3)_1 h'FFFE' h'FFFE'
m(apr0)_0 h'0000' h'0002'
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ABSADD

Type of instruction:
ALU instruction. Absolute value of the addition product, serial data path.

Syntax:
absadd am, rS1, (rS2), rD
absadd am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1 + S2) -> D

Description:
The instruction returns the absolute value of the sum of two 16-bit s/u or
one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
are updated.

Example:
absadd i, 2,apr2, 0,apr3, 1,apr7

Operand Before After

m(apr2)_2 h’0010’ h’0010’
m(apr3)_0 h'FFFE' h'FFFE'
m(apr7)_1 h'0000' h'000E'
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ABSSUB

Type of instruction:
ALU instruction. Absolute value of the subtraction product, serial data path.

Syntax:
abssub am, rS1, (rS2), rD
abssub am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1 – S2) -> D

Description:
The instruction returns the absolute result of the subtract of two 16-bit s/u
operands or one 16-bit operand with 10-bit immediate data. The result is
placed into the memory,  or  into the register,  selected by the addressing
mode. The flags are updated.

Example:
abssub d, r6, r0, r15

Operand Before After

r6 h’000F’ h’000F’
r0 h'0010' h'0010'
r15 h'0000' h'0001'
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ADD

Type of instruction:
ALU instruction. An addition, serial data path.

Syntax:
add am, rS1, (rS2), rD
add am, mS1,aprS1, (mS2,aprS2), mD,aprD
add am, imm10, rS1/D
add am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 + S2 -> D

Description:
The instruction returns the the sum of two 16-bit s/u operands or one 16-
bit  operand  with  10-bit  immediate  data.  The  result  is  placed  into  the
memory,  or into the register,  defined by addressing mode.  The flags are
updated.

Example:
add d, r5, r4, r3

Operand Before After

r5 h’0002’ h’0002’
r4 h’FFFF’ h’FFFF’
r3 h’0000’ h’0001’
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ADDABS

Type of instruction:
ALU instruction. An addition of absolute values, serial data path.

Syntax:
addabs am, rS1, (rS2), rD
addabs am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1) + abs(S2) -> D

Description:
The instruction returns the the sum of absolute values of two 16-bit signed
operands or one 16-bit operand with 10-bit immediate data. The result is
placed into the memory,  or  into the register,  selected by the addressing
mode. The  flags are updated.

Example:
addabs d, r6, r0, r15

Operand Before After

r6 h’FFFF’ h’FFFF’
r0 h'FFFE' h'FFFE'
r15 h'0000' h'0003'
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AND

Type of instruction:
ALU instruction. Bitwise AND, serial data path.

Syntax:
and am, rS1, (rS2), rD
and am, mS1,aprS1, (mS2,aprS2), mD,aprD
and am, imm10, rS/D
and am, imm10, mS/D,aprS/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 AND S2 -> D

Description:
The instruction returns the bitwise AND product of two 16-bit s/u operands
or one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
and d, r5, r10, r0

Operand Before After

r5 h’F001’ h’F001’
r10 h’2001’ h’2001’
r0 h’0001’ h’2001’
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AVG

Type of instruction:
ALU instruction. Average value, serial data path.

Syntax:
avg am, rS1, (rS2), rD
avg am, mS1,aprS1, (mS2,aprS2), mD,aprD
avg am, imm10, rS1/D
avg am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
(S1 + S2)/2 -> D

Description:
The instruction returns the average result from two 16-bit s/u operands or
one 16-bit operand with 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
avg i, 1,apr5, 2,apr4, 0,apr0

Operand Before After

m(apr5)_1 h'0002' h'0002'
m(apr4)_2 h'0006' h'0006'
m(apr0)_0 h’0000’ h’0004’
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BMM

Type of instruction:
Move instruction. Between memory-memory.

Syntax:
bmm am, mS,aprS, mD,aprD
bmm am, rX, mS,aprS, mD,aprD
bmm am, imm11, mS,aprS, mD,aprD

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
imm11: [0x000 – 0x7FF]
rX: r0 – r31
mS, mD: 0 - 3
aprS, aprD: apr0 - apr7

Execution:
m(aprS) -> m(aprD)

Description:
Between  memories  communications.  It  copies  the  data  from  the  source
memory place to the destination memory place. Does not update any flags.

Example:
bmm ppo,5, 3,apr2, 1,apr0

Operand Before After

m(apr2)_3 h’0230’ h’0230’
m(apr0)_1 h’0000’ h’0230’

apr2 h’0001’ h’0006’
apr0 h’0000’ h’0000’
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BRM

Type of instruction:
Move instruction. Between register-memory.

Syntax:
brm am,sd, rS, (imm11|rX| ), mD,aprD
brm am,sd, paS, (imm11|rX| ), aprD
brm am,sd, saS, (imm11|rX| ), mD,aprD
brm am,sd, (imm11|rX| ), mS,aprS, rD

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
sd: 0 - 3
imm11: [0x000 – 0x7FF]
rX, rS, rD: r0 – r31
saS: sa0 – sa7
mS, mD: 0 – 3
paS, paD: pa0 – pa7
aprS, aprD: apr0 - apr7

Execution:
rS -> m(aprD), paS -> m(aprD), saS -> m(aprD), m(aprS) -> rD

Description:
Between memory and registers communications. It copies the data from the
source place to the destination place. Does not update any flags.

Example:
brm no,2 pa2, apr1

Operand Before After

pa2 h’0FF11’ h’0FF11’
m(apr1) h’0000’ h’FF11’

apr1 h’0011’ h’0011’
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BRR

Type of instruction:
Move instruction. Between register-register.

Syntax:
brr rS, rD

Operands: 
rS, rD: r0 – r31

Execution:
rS -> rD

Description:
Between  registers  communications.  It  copies  the  data  from  the  source
register to the destination register. Does not update any flags.

Example:
brr r2, r31

Operand Before After

r2 h’1010’ h’1010’
r31 h’0000’ h’1010’
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BUTFLY

Type of instruction:
DMAC instruction. An addition in the first serial data path and a subtraction
in the second one. 

Syntax:
butfly ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
butfly ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 + S10 -> D0, S01 - S11 -> D1

Description:
The  instruction  returns  the  sum  and  subtract  products,  each  in  the
corresponding serial data path. The flags are updated.

Example:
butfly 0 pinc o1203 dm apr3, apr4

Operand Before After

apr3 h'0000' h'0001'
m(apr3)_1; m(apr3)_2 h’0005’; h'0001' h’0005’; h'0001'
m(apr3)_0; m(apr3)_3 h’0004’; h'FFFE' h’0004’; h'FFFE'
m(apr4)_2; m(apr4)_3 h’0000’; h'0000' h’0006’; h'0002'
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CALL

Type of instruction:
P_FLOW instruction. A subroutine call.

Syntax:
call dest_address

Operands:
dest_address: [0x0000 – 0xFFFF]

Execution:
PC <- dest_address

Description:
A subroutine call instruction. It provides the absolute unconditional branch.

Example:
call sbr3

Operand Before After

PC h’0003’ h’3000’
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CLA

Type of instruction:
Move instruction. Clear the accumulator register.

Syntax:
cla sd, paX
cla sd, saX

Operands: 
sd: 0 - 3
paX: pa0 – pa7
saX: sa0 – sa7

Execution:
h’0000’ -> paX
h’0000’ -> saX

Description:
Clears the accumulator register, that is the serial in MAC0 (0), the serial in
MAC1 (1), the parallel ones (2) or the both serials (3), according to sd field.
Does not update any flags.

Example:
cla 1, sa4

Operand Before After

sd b‘10’ b‘10’
sa4 h’023139CD10’ h’0000000000’
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CMPE

Type of instruction:
ALU instruction. Compare to zero, serial data path.

Syntax:
cmpe am, rS1, (rS2), rD
cmpe am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

Description:
The instruction returns one if two 16-bit s/u operands are equal, and zero
otherwise.  The  result  is  placed  into  the  memory,  or  into  the  register,
selected by the addressing mode. The flags O and C are updated.

Example:
cmpe d, r6, r3

Operand Before After

r6 h'0002' h'0002'
r3 h'0000' h'0000'
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DADD

Type of instruction:
DMAC instruction. Dual addition, both serial data paths.

Syntax:
dadd ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dadd ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 + S10 -> D0, S01 + S11 -> D1

Description:
The instruction returns two sums of 16-bit s/u operands, each from both
serial data paths. The results are placed into the register file, to the memory,
or to the accumulator register. The flags are updated.

Example:
dadd 1 r0, r1, r2, r3

Operand Before After

r0 h'0006' h'0006'
r1 h’11E1’ h’11E7’
r2 h’000C’ h’000C’
r3 h’FFFF’ h’000B’
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DAND

Type of instruction:
DMAC instruction. Dual bitwise AND, both serial data paths.

Syntax:
dand ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dand ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 AND S10  -> D0, S01 AND S11  -> D1

Description:
The instruction returns two bitwise AND products between two 16-bit s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flags Z and N are updated.

Example:
dand 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’000000C001’
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DAVG

Type of instruction:
DMAC instruction. Dual average values, both serial data paths.

Syntax:
davg ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
davg ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 + S10)/2  -> D0, (S01 + S11)/2  -> D1

Description:
The instruction returns two average results from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags Z and N are updated.

Example:
davg 0 no o0321 dm apr3, apr1 (shown for one serial data path)

Operand Before After

m(apr3)_0 h’0002’ h’0002’
m(apr3)_3 h’000A’ h’000A’
m(apr1)_3 h’FFFE’ h’0006’
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DCMPE

Type of instruction:
DMAC instruction. Dual compare to zero, both serial data paths.

Syntax:
dcmpe ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dcmpe ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

Description:
The instruction returns two results  which  are one  if  the two 16-bit  s/u
operands are equal,  and zero  otherwise.  It  processes  in both serial  data
paths and the results are placed into the register file, to the memory, or to
the accumulator. The flags O and C are updated.

Example:
dcmpe 1 r12, r3, r5, r6

Operand Before After

r12 h'11D3' h'11D3'
r3 h’0000’ h’0000’
r5 h’0005’ h’0005’
r6 h’0005’ h’0001’
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DEC

Type of instruction:
ALU instruction. Decrement by 1, serial data path.

Syntax:
dec am, rS1, (rS2), rD
dec am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - 1 -> D

Description:
The instruction returns the decremented by one 16-bit s/u operand. The
result is placed into the memory, or into the register, defined by addressing
mode. The flags are updated.

Example:
dec i,  1,apr0, 1,apr1

Operand Before After

m(apr0)_1 h’0020’ h’0020’
m(apr1)_1 h’0001’ h’001F’
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DMADD

Type of instruction:
DMAC instruction. Dual multiplication and addition, both serial data paths.

Syntax:
dmadd ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dmadd ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 * S10) + [ACC0] -> D0, (S01 * S11) + [ACC1] -> D1

Description:
The instruction returns two MAC results of 16x16-bit s/u i/f multiplication
product  and  40-bit  accumulator  data  from  both  serial  data  paths.  The
results  are  placed  into  the  register  file,  to  the  memory,  or  to  the
accumulator register. The flags are updated.

Example:
dmadd 1 r0, r1, r2, r3, sa3 (shown for one serial data path)

Operand Before After

r0 h'0006' h'0006'
r1 h’FFFE’ h’FFFE’

sa3_0 h’000000000F’ h’0000000003’
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DMAX

Type of instruction:
DMAC instruction. A maximum values, both serial data paths.

Syntax:
dmax ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dmax ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 - S10)  -> D(S10) if D<0, D(S00)  if D>=0 
(S01 - S11)  -> D(S11) if D<0, D(S01)  if D>=0 

Description:
The instruction returns two maximums from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags are updated.

Example:
dmax 1 r0, r1, r2, r3, sa0 (shown for one serial data path)

Operand Before After

r0 h'FFFF' h'FFFF'
r1 h’0002’ h’0002’

sa0_0 h’0000000000’ h’0000000002’
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DMIN

Type of instruction:
DMAC instruction. A minimum values, both serial data paths.

Syntax:
dmin ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dmin ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 - S10)  -> D(S00) if D<0, D(S10)  if D>=0 
(S01 - S11)  -> D(S01) if D<0, D(S11)  if D>=0 

Description:
The instruction returns two minimums from two 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags are updated.

Example:
dmin 1 r0, r1, r2, r3, sa0 (shown for one serial data path)

Operand Before After

r2 h'FFFF' h'FFFF'
r3 h’0002’ h’0002’

sa0_1 h’0000000000’ h’FFFFFFFFFF’
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DMSUB

Type of instruction:
DMAC  instruction.  Dual  multiplication  and  subtraction,  both  serial  data
paths.

Syntax:
dmsub ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dmsub ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
(S00 * S10) - [ACC0] -> D0, (S01 * S11) - [ACC1] -> D1

Description:
The instruction returns two multiply-subtract results of 16x16-bit s/u i/f
multiplication product and 40-bit accumulator data from both serial data
paths. The results are placed into the register file, to the memory, or to the
accumulator. The flags are updated.

Example:
dmsub 1 r0, r1, r2, r3, sa3

Operand Before After

r2 h'0006' h'0006'
r3 h’0002’ h’0002’

sa3_0 h’FFFFFFFFFE’ h’000000000E’
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DMUL

Type of instruction:
DMAC instruction. Dual multiplication, both serial data paths.

Syntax:
dmul ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dmul ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 * S10 -> D0, S01 * S11 -> D1

Description:
The  instruction  returns  two  multiplication  products  of  16-bit  s/u  i/f
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator register. The flags are updated.

Example:
dmul 0 pmo o0321 da 4, apr3, sa5 (shown for one serial data path)

Operand Before After

m(apr3)_2 h’0005’ h’0005’
m(apr3)_1 h’0004’ h’0004’

apr3 h'000A' h'0006'
sa5_1 h'0000000000' h'00014'
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DNAND

Type of instruction:
DMAC instruction. Dual bitwise NAND, both serial data paths.

Syntax:
dnand ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dnand ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 NAND S10  -> D0, S01 NAND S11  -> D1

Description:
The  instruction  returns  two  bitwise  NAND  products  of  two  16-bit  s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flags Z and N are updated.

Example:
dnand 0 pinc o0123 da apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'0005'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000003FF7’
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DNOR

Type of instruction:
DMAC instruction. Dual bitwise NOR, both serial data paths.

Syntax:
dnor ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dnor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 NOR S10  -> D0, S01 NOR S11  -> D1

Description:
The  instruction  returns  two  bitwise  NOR  products  of  two  16-bit  s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flag Z and N are updated.

Example:
dnor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000000188’
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DOR

Type of instruction:
DMAC instruction. Dual bitwise OR, both serial data paths.

Syntax:
dor ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1FF]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 OR S10  -> D0, S01 OR S11  -> D1

Description:
The instruction returns two bitwise OR products of two 16-bit s/u operands
in both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator. The flags Z and N are updated.

Example:
dor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’000000FE77’
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DSHL

Type of instruction:
DMAC instruction. Dual bitwise logic left shift, both serial data paths.

Syntax:
dshl ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dshl ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 1xFF]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00*(2^S10|2^imm5) -> D, zero extension for LSB`s 
S01*(2^S11|2^imm5) -> D, zero extension for LSB`s 

Description:
The instruction returns two bitwise logic left shifted products. The length of
the shifts is defined by S10, S11, or imm5 data. The results are placed into
the  register  file,  to  the  memory,  or  to  the  accumulator.  The  flags  are
updated.

Example:
dshl 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’0000004FD0’; h’0000001188’
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DSHRA

Type of instruction:
DMAC instruction. Dual bitwise arithmetic right, both serial data paths.

Syntax:
dshra ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dshra ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00/(2^S10|2^imm5) -> D, sign extension for MSB`s 
S01/(2^S11|2^imm5) -> D, sign extension for MSB`s 

Description:
The instruction returns two bitwise arithmetic right shifted products. The
length of the shifts is defined by S10, S11, or imm5 data. The results are
placed into the register file, to the memory, or to the accumulator. The flags
Z and N are updated.

Example:
dshra 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’00000004FD’; h’FFFFFFFC46’
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DSHRL

Type of instruction:
DMAC instruction. Dual bitwise logic right shift, both serial data paths.

Syntax:
dshrl ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dshrl ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00/(2^S10|2^imm5) -> D, zero extension for MSB`s 
S01/(2^S11|2^imm5) -> D, zero extension for MSB`s 

Description:
The instruction returns two bitwise logic right shifted products. The length
of the shifts is defined by S10, S11, or imm5 data. The results are placed
into the register file, to the memory, or to the accumulator. The flags Z and
N are updated.

Example:
dshrl 1 r3, r4, r5, r6, sa6

Operand Before After

r3; r4 h'13F4'; h'0002' h'13F4'; h'0002'
r5; r6 h’E231’; h'0003' h’E231’; h'0003'

sa6_0; sa6_1 h’0000000000’; h’0000000000’ h’00000004FD’; h’0000001C46’
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DSUB

Type of instruction:
DMAC instruction. Dual subtraction, both serial data paths.

Syntax:
dsub ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dsub ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: o’HHHH’, [opA0&opB0&opA1&opB1]
d: dm, da
imm5: [0x00 - 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 - S10 -> D0, S01 - S11 -> D1

Description:
The instruction returns two subtraction products of 16-bit s/u operands in
both serial data paths. The results are placed into the register file, to the
memory, or to the accumulator register. The flags are updated.

Example:
dsub 0 pinc o0321 da apr3, sa5 (shown for one serial data path)

Operand Before After

m(apr3)_2 h’0005’ h’0005’
m(apr3)_1 h’0004’ h’0004’

apr3 h'0FFF' h'1000'
sa5_1 h'0000000000' h'0000000001'
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DXOR

Type of instruction:
DMAC instruction. Dual bitwise XOR, both serial data paths.

Syntax:
dxor ss am MAO d (imm5|rIND|  ), aprS, (aprD|saS/D)
dxor ss rS00, rS/D10, rS01, rS/D11, saS/D

Operands:
ss: 0 - 1
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
MAO: b’xxxxxxxx’, [opA0&opB0&opA1&opB1]
d: 0 - 1
imm5: [0x00 – 0x1F]
rS00, rS01, rS/D10, rS/D11: r0 – r31
aprS, aprD: apr0 – apr7
saS/D: sa0 - sa7

Execution:
S00 XOR S10  -> D0, S01 XOR S11  -> D1

Description:
The  instruction  returns  two  bitwise  XOR  products  of  two  16-bit  s/u
operands in both serial data paths. The results are placed into the register
file, to the memory, or to the accumulator. The flag Z and N are updated.

Example:
dxor 0 pind o0123 da r9, apr3, sa1 (shown for one serial data path)

Operand Before After

apr3 h'0004' b'000D'
m(apr3)_0 h’E231’ h’E321’
m(apr3)_1 h’DC47’ h’DC47’

sa1_0 h’0000000000’ h’0000003E76’
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INC

Type of instruction:
ALU instruction. Increment by 1, serial data path.

Syntax:
inc am, rS1, (rS2), rD
inc am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 + 1 -> D

Description:
The instruction returns the incremented by one 16-bit s/u operand.  The
result is placed into the memory or into the register, defined by addressing
mode. The flags are updated.

Example:
inc i,  1,apr0, 3,apr1

Operand Before After

m(apr0)_1 h’0020’ h’0020’
m(apr1)_3 h’FF00’ h’0021’
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JC

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jc (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the carry flag is raised. Relative destination address is calculated.

Example:
jc a, 0x00FF

Operand Before After

PC h’0F12’ h’00FF’
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JE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
je (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “equal to zero” condition is true. Relative destination address is
calculated.

Example:
je r, r20

Operand Before After

PC h’0012’ h’0011’
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JGT

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jgt (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “greater then zero” condition is true. Relative destination address
is calculated.

Example:
jgt loop

Operand Before After

PC h’0003’ h’000A’
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JGTE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jgte (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only  if  the  “greater  then  or  equal  to  zero”  condition  is  true.  Relative
destination address is calculated.

Example:
jgte r, r5

Operand Before After

PC h’7342’ h’0123’
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JLT

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jlt (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “less then zero” condition is true. Relative destination address is
calculated.

Example:
jlt a, 0x0211

Operand Before After

PC h’7342’ h’0211’
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JLTE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jlte (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “less then or equal to zero” condition is true. Relative destination
address is calculated.

Example:
jlte main

Operand Before After

PC h’0012’ h’0011’
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JMP

Type of instruction:
P_FLOW instruction. An unconditional branch.

Syntax:
jmp (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes  the instruction execution order  by  updating  PC.
Relative destination address is calculated.

Example:
jmp loop

Operand Before After

PC h’0003’ h’000A’
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JNC

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jnc (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the carry flag is not raised. Relative destination address is calculated.

Example:
jnc count

Operand Before After

PC h’0342’ H’000B’
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JNE

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jne (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the “not equal to zero” condition is true. Relative destination address
is calculated.

Example:
jne v

Operand Before After

PC h’0F12’ h’1111’
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JNO

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jno (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only  if  the  overflow  flag  is  not  raised.  Relative  destination  address  is
calculated.

Example:
jno loop2

Operand Before After

PC h’0342’ H’0002’

���



JO

Type of instruction:
P_FLOW instruction. A conditional branch.

Syntax:
jo (a|r  ), dest

Operands:
a, r: 1
dest: ( label | [0x0000 – 0xFFFF] | [r0 – r31] )

Execution:
PC <- dest

Description:
The instruction changes the instruction execution order by updating the PC
only if the overflow flag is raised. Relative destination address is calculated.

Example:
jo a, 0x00FF

Operand Before After

PC h’0F12’ h’00FF’
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LD

Type of instruction:
MOVE instruction. Load data.

Syntax:
ld sd, imm16, rD
ld sd, imm16, aprD
ld sd, imm16, mD,aprD

Operands: 
sd: 0 - 2
imm16: [0x0000 – 0xFFFF]
rD: r0 – r31
mD: 0 – 3
aprD: apr0 - apr7

Execution:
imm16 -> rD,
imm16 -> aprD,
imm16 -> m(aprD)

Description:
The instruction loads the  16-bit  immediate  data  to  the  general  purpose
register, to the address pointer register, or to the memory, selected by the
“sd” field. Does not update any flags.

Example:
ld 1, 0x0040, apr1

Operand Before After

imm16 h’0040’ h’0040’
apr1 h’0000’ h’0040’

���



MADD

Type of instruction:
MAC instruction. A Multiplication and addition, serial data path.

Syntax:
madd am, d, rS1, rS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)
madd am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)

Operands: 
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 – 0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
(S1 * S2) + [ACC] -> D(rX/saX/aprX)

Description:
The  instruction  returns  the  MAC  value  of  the  16x16-bit  s/u  i/f
multiplication product and 40-bit accumulator register. The result is placed
into the register file, to the memory, or to the accumulator register, selected
by the “d” switch. The flags are updated.

Example:
madd d,pinc, 0,apr3, 1,apr3, sa1

Operand Before After

m(apr3)_0 h‘0004’ h’0004’
m(apr3)_1 h’0003’ h’0003’

sa1 h’0000000007’ h’0000000013’
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MAX

Type of instruction:
ALU instruction. A maximum value, serial data path.

Syntax:
max am, rS1, (rS2), rD
max am, mS1,aprS1, (mS2,aprS2), mD,aprD
max am, imm10, rS1/D
max am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D(S2) if result is less then zero
S1 - S2 -> D(S1) if result is greater or equal to zero 

Description:
The instruction returns the maximum from two 16-bit s/u operands or one
16-bit operand and 10-bit immediate data.  The result  is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
max d, r1, r2, r3

Operand Before After

r1 h'0002' h'0002'
r2 h'0005' h'0005'
r3 h’0000’ h’0005’
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MIN

Type of instruction:
ALU instruction. A minimum value, serial data path.

Syntax:
min am, rS1, (rS2), rD
min am, mS1,aprS1, (mS2,aprS2), mD,aprD
min am, imm10, rS1/D
min am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D(S2) if result is less then zero
S1 - S2 -> D(S1) if result is greater or equal to zero 

Description:
The instruction returns the minimum from two 16-bit s/u operands or one
16-bit operand and 10-bit immediate data.  The result  is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
min d, r1, r2, r3

Operand Before After

r1 h'0002' h'0002'
r2 h'0005' h'0005'
r3 h’0000’ h’0002’
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MSUB

Type of instruction:
MAC instruction. A Multiplication and subtraction, serial data path.

Syntax:
msub am, d, rS1, rS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)
msub am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)

Operands: 
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 - 0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
(S1 * S2) – [ACC] -> D(rX/saX/aprX)

Description:
The  instruction  returns  the  subtracted  value  of  the  16x16-bit  s/u  i/f
multiplication product and 40-bit accumulator register. The result is placed
into  the  accumulator  register,  selected by the “d”  switch.  The flags  are
updated.

Example:
msub d,pinc, 0,apr3, 1,apr3, sa1

Operand Before After

m(apr3)_0 h‘0004’ h’0004’
m(apr3)_1 h’0003’ h’0003’

sa1 h’0000000007’ h’0000000005’
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MUL

Type of instruction:
MAC instruction. A multiplication, serial data path.

Syntax:
mul am, d, rS1, rS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)
mul am, d, mS1,aprS1, mS2,aprS2, (rIND|imm5|  ), (rD|mD,aprD|saS/D)

Operands: 
am: d(0),i(1),pinc(2),pdec(3),pind(4),ppo(5),pmo(6)
d: 0 - 2
imm5: [0x00 -0x1F]
rIND, rS1, rS2, rD: r0 – r31
aprS, aprD: apr0 - apr7
saS/D: sa0 – sa7

Execution:
S1 * S2 -> D(rX/saX/aprX)

Description:
The instruction returns  the multiplication product  of  two 16-bit  s/u i/f
operands. The result is placed into the memory, into register file or in the
accumulator register, selected by the “d” switch. The flags are updated.

Example:
mul d,0, r1,r2, 2,apr3

Operand Before After

r1 h‘0008’ h’0008’
r2 h’000F’ h’000F’

m(apr3)_2 h’0000’ h’00F0’
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NAND

Type of instruction:
ALU instruction Bitwise NAND, serial data path.

Syntax:
nand am, rS1, (rS2), rD
nand am, mS1,aprS1, (mS2,aprS2), mD,aprD
nand am, imm10, rS/D
nand am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NAND S2 -> D

Description:
The  instruction  returns  the  bitwise  NAND  product  of  two  16-bit  s/u
operands or one 16-bit operand and 10-bit immediate data. The result is
placed into the memory,  or  into the register,  selected by the addressing
mode. The flags Z and N are updated.

Example:
nand d, r5, r10, r0

Operand Before After

r5 h’F001’ h’F001’
r10 h’2001’ h’2001’
r0 h’0001’ h’DFFE’

���



NEG

Type of instruction:
ALU instruction. Negate value, serial data path.

Syntax:
neg am, rS1, (rS2), rD
neg am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 -> -S1

Description:
The instruction returns the negated 16-bit signed operand.  The result  is
placed  into  the  memory or  into  the  register,  selected by  the  addressing
mode. Does not update any flags.

Example:
neg pinc, 1,apr4, 3,apr5

Operand Before After

apr4 h'0002' h'0003'
m(apr4)_1 h’0001’ h’0001’
m(apr5)_3 h'0000' h'FFFF'
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NOP

Type of instruction:
MOVE instruction. No operation (do nothing)

Syntax:
nop

Operands: 
Instruction has no any operands

Execution:
PC <- PC + 1

Description:
The instruction does nothing, except updating the PC. Does not update the
flags.

Example:
nop

Operand Before After

PC h’0001’ h’0002’
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NOR

Type of instruction:
ALU instruction. Bitwise NOR, serial data path.

Syntax:
nor am, rS1, (rS2), rD
nor am, mS1,aprS1, (mS2,aprS2), mD,aprD
nor am, imm10, rS/D
nor am, imm10, mS/D,aprS/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NOR S2 -> D

Description:
The instruction returns the bitwise NOR product of two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
nor ii, 4, 2,apr2

Operand Before After

imm10 0x004 0x004
m(apr2)_2 h’0000’ h’FFFB’
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NOT

Type of instruction:
ALU instruction. Bitwise NOT, serial data path.

Syntax:
not am, rS1, (rS2), rD
not am, mS1,aprS1, (mS2,aprS2), mD,aprD

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 NOT S2 -> D

Description:
The instruction returns the bitwise NOT product of the 16-bit s/u operand.
The result is placed into the memory, or into the register, selected by the
addressing mode. The flags Z and N are updated.

Example:
not i, 1,apr6, 2,apr0

Operand Before After

m(apr6)_1 h’F0F0’ h’F0F0’
m(apr0)_2 h’0000’ h’0F0F’
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OR

Type of instruction:
ALU instruction. Bitwise OR, serial data path.

Syntax:
or am, rS1, (rS2), rD
or am, mS1,aprS1, (mS2,aprS2), mD,aprD
or am, imm10, rS/D
or am, imm10, mS/D,aprS/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 OR S2 -> D

Description:
The instruction returns the bitwise OR product of two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory, or into the register, selected by the addressing mode. The flags
Z and N are updated.

Example:
or ii, 4, 2,apr2

Operand Before After

imm10 0x004 0x004
m(apr2)_2 h’0000’ h’0004’
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PADD

Type of instruction:
SIMD instruction. An addition, parallel data paths.

Syntax:
padd am ip MAO d aprS, (aprD|paS/paD)
padd am ip MAO d imm5, aprS, (aprD|paS/paD)
padd am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) + S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the sum of two 8/16-bit s/u operands. The result is
placed into the memory or into the accumulator register,  selected by the
“d” switch. The flags are updated.

Example:
padd pinc sp o0231 da apr0, pa3 (shown for one parallel data path)

Operand Before After

apr0 h‘0000’ h’0001’
m(apr0)_2 h’0110’ h’0110’

pa3_2 h’00000’ h’00011’
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PAND

Type of instruction:
SIMD instruction. Bitwise AND, parallel data paths.

Syntax:
pand am ip MAO d aprS, (aprD|paS/paD)
pand am ip MAO d imm5, aprS, (aprD|paS/paD)
pand am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) AND S2(aprS) -> D(aprD/paD)

 
Description:
The instruction returns the bitwise AND product of two 8/16-bit operands.
The result is placed into the memory or in the accumulator register, selected
by the “d” switch. The flags Z and N are updated.

Example:
pand pinc sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0000’ h’0001’
m(apr1)_0 h‘AE46’ h’AE46’

pa0_0 h’00000’ h’00006’
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PAVG

Type of instruction:
SIMD instruction. Average value, parallel data paths.

Syntax:
pavg am ip MAO d aprS, (aprD|paS/paD)
pavg am ip MAO d imm5, aprS, (aprD|paS/paD)
pavg am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
[S1(aprS) + S2(aprS)]/2 -> D(aprD/paD)

Description:
The instruction returns the average result from two 8/16-bit s/u operands.
The result is placed into the memory or in the accumulator register, selected
by the “d” switch. The flags Z and N are updated.

Example:
pavg pdec dp o1223 dm apr0, apr7

Operand Before After

apr0 h‘0111’ h’0110’
m(apr0)_0; m(apr0)_1; m(apr0)_2 h‘000A’ : h'000B' :  h'000C' h‘000A’ : h'000B' :  h'000C'

m(apr7)_0; m(apr7)_1 h’0000’ : h'0000' h’000B’ : h'000C'
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PCMPE

Type of instruction:
SIMD instruction. Compare to zero, parallel data paths.

Syntax:
pcmpe am ip MAO d aprS, (aprD|paS/paD)
pcmpe am ip MAO d imm5, aprS, (aprD|paS/paD)
pcmpe am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00  - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
0 <- if opA != opB , 1 <- if opA = opB

 
Description:
The instruction returns one if  two 8/16-bit s/u operands are equal,  and
zero otherwise. The result is placed into the memory or in the accumulator
register, selected by the “d” switch. The flags O and C are updated.

Example:
pcmpe pinc dp o2211 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0001’ h’0002’
m(apr1)_1 h‘0000’ h’0000’
m(apr1)_2 h‘0000’ h’0000’

pa0_2 h’00000’ h’00001’
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PDOT

Type of instruction:
SIMD instruction. DOT multiplication product, parallel data paths.

Syntax:
pdot am ip MAO d aprS, (aprD|paS/paD)
pdot am ip MAO d imm5, aprS, (aprD|paS/paD)
pdot am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
|a * b| + |c * d| + |e * f| + |g * h| -> D(aprX|paX)

Description:
the instruction returns the DOT multiplication product from up to eight 8-
bit  s/u  operands.  The  result  is  placed  into  the  memory  or  in  the
accumulator register, selected by “d” switch. The flags are updated.

Example:
pdot no sp o0123 da apr4, pa3

Operand Before After

apr4 h‘0001’ h’0001’
m(apr4) h'0804' : h’0201’ : h'0C15' : h’1001’ h'0804' : h’0201’ : h'0C15' : h’1001’
pa3_3 h’00000’ h’00122’
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PMAX

Type of instruction:
SIMD instruction. A maximum value, parallel data paths.

Syntax:
pmax am ip MAO d aprS, (aprD|paS/paD)
pmax am ip MAO d imm5, aprS, (aprD|paS/paD)
pmax am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(S2) if result is less then zero
S1(aprS) - S2(aprS) -> D(S1) if result is greater or equal to zero 

 
Description:
The  instruction  returns  the  maximum  operand  from  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by “d” switch. The flags are updated.

Example:
pmax no sp o0123 dm apr1, apr3 (shown for one parallel data path)

Operand Before After

m(apr1)_1 h‘0405’ h’0405’
m(apr3)_1 h’0000’ h’0005’
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PMIN

Type of instruction:
SIMD instruction. A minimum value, parallel data paths.

Syntax:
pmin am ip MAO d aprS, (aprD|paS/paD)
pmin am ip MAO d imm5, aprS, (aprD|paS/paD)
pmin am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(S1) if result is less then zero
S1(aprS) - S2(aprS) -> D(S2) if result is greater or equal to zero 

 
Description:
The  instruction  returns  the  minimum  operand  from  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by the “d” switch. The flags are updated.

Example:
pmin no sp o0123 dm apr1, apr3 (shown for one parallel data path)

Operand Before After

m(apr1) h‘0405’ h’0405’
m(apr3) h’0000’ h’0004’
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PMUL

Type of instruction:
SIMD instruction. A Multiplication, parallel data paths.

Syntax:
pmul am ip MAO d aprS, (aprD|paS/paD)
pmul am ip MAO d imm5, aprS, (aprD|paS/paD)
pmul am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) * S2(aprS) -> D(aprD/paD)

Description:
The instruction returns  the multiplication result  of  two 8/16-bit  s/u i/f
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by the “d” switch. The flags are updated.

Example:
pmul no sp o0231 da apr4, pa3 (shown for one parallel data path)

Operand Before After

apr4 h‘0001’ h’0001’
m(apr4)_3 h’0201’ h’0201’

pa3_3 h’00000’ h’00002’
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PNAND

Type of instruction:
SIMD instruction. Bitwise NAND, parallel data paths.

Syntax:
pnand am ip MAO d aprS, (aprD|paS/paD)
pnand am ip MAO d imm5, aprS, (aprD|paS/paD)
pnand am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) NAND S2(aprS) -> D(aprD/paD)

 
Description:
The  instruction  returns  the  bitwise  NAND  product  of  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by “d” switch. The flags Z and N are updated.

Example:
pnand pinc sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0000’ h’0001’
m(apr1)_1 h‘AE46’ h’AE46’

pa0_1 h’00000’ h’FFFF9’
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PNOR

Type of instruction:
SIMD instruction. Bitwise NOR, parallel data paths.

Syntax:
pnor am ip MAO d aprS, (aprD|paS/paD)
pnor am ip MAO d imm5, aprS, (aprD|paS/paD)
pnor am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) NOR S2(aprS) -> D(aprD/paD)

 
Description:
The  instruction  returns  the  bitwise  NOR  product  of  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by switch. The flags Z and N are updated.

Example:
pnor pdec sp o0123 da apr1, pa0 (shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’001F’
m(apr1)_0 h‘AE46’ h’AE46’

pa0_0 h’00000’ h’00011’
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POR

Type of instruction:
SIMD instruction. Bitwise OR, parallel data paths.

Syntax:
por am ip MAO d aprS, (aprD|paS/paD)
por am ip MAO d imm5, aprS, (aprD|paS/paD)
por am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) OR S2(aprS) -> D(aprD/paD)

 
Description:
The  instruction  returns  the  bitwise  OR  product  of  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by the “d” switch. The flags Z and N are updated.

Example:
por pdec sp o0123 da apr1, pa0�(shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’001F’
m(apr1)_2 h‘AE46’ h’AE46’

pa0_2 h’00000’ h’FFFEE’
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PSAD

Type of instruction:
SIMD instruction. Sum of Absolute Differences, parallel data paths.

Syntax:
psad am ip MAO d aprS, (aprD|paS/paD)
psad am ip MAO d imm5, aprS, (aprD|paS/paD)
psad am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 -0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
|a-b|+|c-d|+|e-f|+|g-h| -> D(aprX|paX)

Description:
The instruction returns the sum of the absolute differences from up to eight
8-bit  s/u  operands.  The  result  is  placed  into  the  memory  or  in  the
accumulator register, selected by the “d” switch. The flags are updated.

Example:
psad pinc sp o0231 dm apr4, apr3

Operand Before After

apr4 h‘0001’ h’0002’
m(apr4) h'0804' : h’0C15’ : h'0201' : h’0201’ h'0804' : h’0C15’ : h'0201' : h’0201’

m(apr3)_2 h’00000’ h’FFFFE’
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PSHL

Type of instruction:
SIMD instruction. Bitwise logic left shift, parallel data paths.

Syntax:
pshl am ip MAO d aprS, (aprD|paS/paD)
pshl am ip MAO d imm5, aprS, (aprD|paS/paD)
pshl am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 – 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1*(2^(S2|imm5)) -> D, zero extension for LSB`s 

 
Description:
The  instruction  returns  the  bitwise  logic  left  shifted  product.  The  shift
length is defined by S2 or imm5 data. The result is placed into the memory
or in the accumulator register,  selected by the “d”  switch.  The flags  are
updated.

Example:
pshl no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘350F’ h’350F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'A878'
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PSHRA

Type of instruction:
SIMD instruction. Bitwise arithmetic right shift, parallel data paths.

Syntax:
pshra am ip MAO d aprS, (aprD|paS/paD)
pshra am ip MAO d imm5, aprS, (aprD|paS/paD)
pshra am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 – 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1/(2^(S2|imm5 )) -> D, sign extension for MSB`s 

 
Description:
The instruction returns  the bitwise  arithmetic  right  shifted product.  The
shift length is defined by S2 or imm5 data. The result is placed into the
memory or in the accumulator register, selected by the “d” switch. The flags
Z and N are updated.

Example:
pshra no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘350F’ h’350F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'06A1'
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PSHRL

Type of instruction:
SIMD instruction. Bitwise logic right shift, parallel data path.

Syntax:
pshrl am ip MAO d aprS, (aprD|paS/paD)
pshrl am ip MAO d imm5, aprS, (aprD|paS/paD)
pshrl am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1/(2^(S2|imm5 )) -> D, zero extension for MSB`s 

 
Description:
The instruction returns the bitwise logic  right  shifted product.  The shift
length is defined by S2 or imm5 data. The result is placed into the memory
or in the accumulator register, selected by the “d” switch. The flags Z and N
are updated.

Example:
pshrl no dp o3123 dm apr1, apr5 (shown for one parallel data path)

Operand Before After

m(apr1)_0 h‘B50F’ h’B50F’
m(apr1)_3 h‘0003’ h’0003’
m(apr5)_0 h'0000' h'F6A1'

�	�



PSUB

Type of instruction:
SIMD instruction. A subtraction, parallel data paths.

Syntax:
psub am ip MAO d aprS, (aprD|paS/paD)
psub am ip MAO d imm5, aprS, (aprD|paS/paD)
psub am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: sp, dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) - S2(aprS) -> D(aprD/paD)

Description:
The instruction returns the subtraction of two 8/16-bit s/u operands. The
result is placed into the memory or in the accumulator register, selected by
the “d” switch. The flags are updated.

Example:
psub no sp o0231 da apr0, pa3 (shown for one parallel data path)

Operand Before After

apr0 h‘0001’ h’0001’
m(apr0)_0 h’0110’ h’0110’

pa3_0 h’00000’ h’FFFF1’
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PXOR

Type of instruction:
SIMD instruction. Bitwise XOR, parallel data paths.

Syntax:
pxor am ip MAO d aprS, (aprD|paS/paD)
pxor am ip MAO d imm5, aprS, (aprD|paS/paD)
pxor am ip MAO d rIND, aprS, (aprD|paS/paD)

Operands: 
am: no(0),pinc(1),pdec(2),pind(3),ppo(4),pmo(5)
ip: dp
MAO: o’HHHH’
d: da, dm
imm5: [0x00 - 0x1F]
rIND: r0 – r31
aprS, aprD: apr0 - apr7
paS, paD: pa0 – pa7

Execution:
S1(aprS) XOR S2(aprS) -> D(aprD/paD)

 
Description:
The  instruction  returns  the  bitwise  XOR  product  of  two  8/16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by the “d” switch. The flags Z and N are updated.

Example:
pxor ppo sp o0123 dm 6, apr1, apr0 (shown for one parallel data path)

Operand Before After

apr1 h‘0020’ h’0026’
m(apr1)_1 h‘AE46’ h’AE46’
m(apr0)_1 h’00000’ h’FFFE8’
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SHL

Type of instruction:
ALU instruction. Bitwise logic left shift, serial data path.

Syntax:
shl am, rS1, (rS2), rD
shl am, mS1,aprS1, (mS2,aprS2), mD,aprD
shl am, imm10, rS1/D
shl am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1*(2^(S2|imm10)) -> D, zero extension for LSB`s 

Description:
The instruction returns the bitwise logic left shifted product. The length of
the shift is defined by S2 or by imm10 data. The result is placed into the
memory or into the register, selected by the addressing mode. The flags are
updated.

Example:
shl ii, 2, 0,apr5

Operand Before After

imm10 0x002' 0x002
m(apr5)_0 h'C021' h'0084'
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SHRA

Type of instruction:
ALU instruction. Bitwise arithmetic right shift, serial data path.

Syntax:
shra am, rS1, (rS2), rD
shra am, mS1,aprS1, (mS2,aprS2), mD,aprD
shra am, imm10, rS1/D
shra am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1/(2^(S2|imm10)) -> D, sign extension for MSB`s 

Description:
The instruction returns  the bitwise  arithmetic  right  shifted product.  The
length of the shift is defined by S2 or by imm10 data. The result is placed
into the memory or into the register, selected by the addressing mode. The
flags Z and N are updated.

Example:
shra di, 2, r5

Operand Before After

imm10 0x002 0x002
r5 h'C021' h'F008'

�	�



SHRL

Type of instruction:
ALU instruction. Bitwise logic right shift, serial data path.

Syntax:
shrl am, rS1, (rS2), rD
shrl am, mS1,aprS1, (mS2,aprS2), mD,aprD
shrl am, imm10, rS1/D
shrl am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1/(2^(S2|imm10)) -> D, zero extension for most significant bits 

Description:
The instruction returns the bitwise logic right shifted product. The length of
the shift is defined by S2 or by imm10 data. The result is placed into the
memory or into the register, selected by addressing mode. The flags Z and N
are updated.

Example:
shrl di, 2, r5

Operand Before After

imm10 0x002 0x002
r5 h'C021' h'3008'
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SUB

Type of instruction:
ALU instruction. A Subtraction, serial data path.

Syntax:
sub am, rS1, (rS2), rD
sub am, mS1,aprS1, (mS2,aprS2), mD,aprD
sub am, imm10, rS1/D
sub am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 - S2 -> D

Description:
The instruction returns the subtracted result from two 16-bit s/u operands
or one 16-bit operand and 10-bit immediate data. The result is placed into
the memory or into the register, selected by the addressing mode. The flags
are updated.

Example:
sub di, 19, r3

Operand Before After

imm10 0x013 0x013
r3 h’0020’ h’FFF3’
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SUBABS

Type of instruction:
ALU instruction. A subtraction of absolute values, serial data path.

Syntax:
subabs am, rS1, (rS2), rD
subabs am, mS1,aprS1, (mS2,aprS2), mD,aprD
sub am, imm10, rS1/D
sub am, imm10, mS1/D,aprS1/D

Operands: 
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 - 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
abs(S1) – abs(S2) -> D

Description:
The  instruction  returns  the  subtraction  of  two  absolute  16-bit  signed
values. The result is placed into the memory or into the register, selected by
the addressing mode. The flags are updated.

Example:
subabs d, r6, r0, r15

Operand Before After

r6 h’000F’ h’000F’
r0 h'FFFE' h'FFFE'
r15 h'0000' h'000D'
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SWP

Type of instruction:
MOVE instruction. Swap data between registers

Syntax:
swp rS, rD

Operands: 
rS, rD: r0 – r31

Execution:
rS -> rD, rD -> rS

Description:
Swap data between registers. Does not update the flags.

Example:
swp r2, r31

Operand Before After

r2 h’1010’ h’0000’
r31 h’0000’ h’1010’
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RPT

Type of instruction:
P_FLOW instruction. Hardware loop instruction.

Syntax:
rpt #instr, #cycles

Operands:
#instr: [0x01 - 0xFF]
#cycles: [0x0001 – 0xFFFF]

Execution:
Execution example: loop last 15 instructions 63 times

Description:
This  instruction launches  hardware  loops  of  #instr  previous instructions
#cycles times, according to the PC.

Example:
rpt 15, 63
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RTS

Type of instruction:
P_FLOW instruction. Return from subroutine.

Syntax:
rts

Operands:
Instruction takes no operands

Execution:
PC <- PC-stack

Description:
This instruction jumps back from the subroutine and restores the PC values.

Example:
rts

Operand Before After

PC-stack h'0023' h'0023'
PC h’1F23’ h’0023’
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XOR

Type of instruction:
ALU instruction. Bitwise XOR, serial data path.

Syntax:
xor am, rS1, (rS2), rD
xor am, mS1,aprS1, (mS2,aprS2), mD,aprD
xor am, imm10, rS/D
xor am, imm10, mS/D,aprS/D

Operands:
am: d(0),di(1),i(2),ii(3),pinc(4),pdec(5),ppo(6),pmo(7)
imm10: [0x000 – 0x3FF]
rS1, rS2, rD: r0 – r31
aprS1, aprS2, aprD: apr0 - apr7

Execution:
S1 XOR S2 -> D

Description:
The  instruction  returns  the  bitwise  XOR  product  of  two  16-bit  s/u
operands.  The  result  is  placed  into  the  memory  or  in  the  accumulator
register, selected by the addressing mode. The flags Z and N are updated.

Example:
xor i, 0,apr0, 2,apr2, 0,apr0

Operand Before After

m(apr0)_0 h’01E7’ h’FE18’
m(apr2)_2 h’FFFF’ h’FFFF’
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