
Moscow Institute of Physics and Technology

MDSP Project | Intel Lab

Pipelining Review

and Its Limitations

 Yuri Baida
yuri.baida@gmail.com

yuriy.v.baida@intel.com

October 16, 2010

mailto:Yuri.baida@gmail.com
mailto:Yuriy.v.baida@gmail.com

Moscow Institute of Physics and Technology 2

MDSP Project | Intel Lab

Agenda

• Review

– Instruction set architecture

– Basic tools for computer architects

• Amdahl's law

• Pipelining

– Ideal pipeline

– Cost-performance trade-off

– Dependencies

– Hazards, interlocks & stalls

– Forwarding

– Limits of simple pipeline

Moscow Institute of Physics and Technology 3

MDSP Project | Intel Lab

Review

Moscow Institute of Physics and Technology 4

MDSP Project | Intel Lab

Instruction Set Architecture

• ISA is the hardware/software interface

– Defines set of programmer visible state

– Defines instruction format (bit encoding) and instruction semantics

– Examples: MIPS, x86, IBM 360, JVM

• Many possible implementations of one ISA

– 360 implementations: model 30 (c. 1964), z10 (c. 2008)

– x86 implementations: 8086, 286, 386, 486, Pentium, Pentium Pro,

Pentium 4, Core 2, Core i7, AMD Athlon, Transmeta Crusoe

– MIPS implementations: R2000, R4000, R10000, R18K, …

– JVM: HotSpot, PicoJava, ARM Jazelle, ...

Moscow Institute of Physics and Technology 5

MDSP Project | Intel Lab

Basic Tools for Computer Architects

• Amdahl's law

• Pipelining

• Out-of-order execution

• Critical path

• Speculation

• Locality

• Important metrics

– Performance

– Power/energy

– Cost

– Complexity

Moscow Institute of Physics and Technology 6

MDSP Project | Intel Lab

Amdahl's Law

Moscow Institute of Physics and Technology 7

MDSP Project | Intel Lab

Amdahl’s Law: Definition

• Speedup = Timewithout enhancement / Timewith enhancement

• Suppose an enhancement speeds up a fraction f

of a task by a factor of S

• We should concentrate efforts on improving frequently occurring
events or frequently used mechanisms

1 ‒ f f

1 ‒ f f / S

Moscow Institute of Physics and Technology 8

MDSP Project | Intel Lab

Amdahl’s Law: Example

• New processor 10 times faster

• Input-output is a bottleneck

– 60% of time we wait

• Let’s calculate

• Its human nature to be attracted by 10× faster

– Keeping in perspective its just 1.6× faster

Moscow Institute of Physics and Technology 9

MDSP Project | Intel Lab

Pipelining

Moscow Institute of Physics and Technology 10

MDSP Project | Intel Lab

A Generic 4-stage Processor Pipeline

Instruction

Fetch Unit gets
the next instruction from the cache.

Decode Unit determines
type of instruction.

Write Unit stores result.

Instruction and data sent to
Execution Unit.

Fetch Decode Execute Write

Fetch

L2 Cache

Floating

Point

Unit

Multimedia

Unit

Integer Unit

Decode

Write

Instruction Fetch Decode Read Execute Memory Write

Moscow Institute of Physics and Technology 11

MDSP Project | Intel Lab

Pipeline: Steady State

Cycle 1 2 3 4 5 6 7 8 9

Instr1 Fetch Decode Read Execute Memory Write

Instr2 Fetch Decode Read Execute Memory Write

Instr3 Fetch Decode Read Execute Memory Write

Instr4 Fetch Decode Read Execute Memory Write

Instr5 Fetch Decode Read Execute Memory

Instr6 Fetch Decode Read Execute

• Latency — elapsed time from start to completion of a particular task

• Throughput — how many tasks can be completed per unit of time

• Pipelining only improves throughput

– Each job still takes 4 cycles to complete

• Real life analogy: Henry Ford’s automobile assembly line

Moscow Institute of Physics and Technology 12

MDSP Project | Intel Lab

Pipelining Illustrated

L

L

L

n Gate Delay

n/2 Gate Delay

n/3 Gate
Delay

L n/2 Gate Delay

L
n/3 Gate

Delay
L

n/3 Gate
Delay

TP ~ 1/n

TP ~ 2/n

TP ~ 3/n

Moscow Institute of Physics and Technology 13

MDSP Project | Intel Lab

Pipelining Performance Model

• Starting from an unpipelined
version with propagation delay T

and TP = 1/T

where

• S — delay through latch and

overhead

T

T/k

S

T/k

S

Unpipelined k-stage
pipelined

…

Moscow Institute of Physics and Technology 14

MDSP Project | Intel Lab

Hardware Cost Model

• Starting from an unpipelined
version with hardware cost G

where

• L — cost of adding each latch G

G/k

L

G/k

L

Unpipelined k-stage
pipelined

…

Moscow Institute of Physics and Technology 15

MDSP Project | Intel Lab

Cost/Performance Trade-off
[Peter M. Kogge, 1981]

Moscow Institute of Physics and Technology 16

MDSP Project | Intel Lab

Pipelining Idealism

• Uniform suboperations

– The operation to be pipelined can be evenly partitioned

into uniformlatency suboperations

• Repetition of identical operations

– The same operations are to be performed repeatedly

on a large number of different inputs

• Repetition of independent operations

– All the repetitions of the same operation are mutually independent

– Good example: automobile assembly line

Moscow Institute of Physics and Technology 17

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 18

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 19

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 20

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 21

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 22

MDSP Project | Intel Lab

Pipelining Reality

• Uniform suboperations... NOT! ⇒ Balance pipeline stages

– Stage quantization to yield balanced stages

– Minimize internal fragmentation (some waiting stages)

• Identical operations... NOT! ⇒ Unify instruction types

– Coalescing instruction types into one “multi-function” pipe

– Minimize external fragmentation (some idling stages)

• Independent operations... NOT! ⇒ Resolve dependencies

– Inter-instruction dependency detection and resolution

– Minimize performance lose

Moscow Institute of Physics and Technology 23

MDSP Project | Intel Lab

Hazards, Interlocks, and Stalls

• Pipeline hazards

– Potential violations of program dependences

– Must ensure program dependences are not violated

• Hazard resolution

– Static Method: performed at compiled time in software

– Dynamic Method: performed at run time using hardware

– Stall

– Flush

– Forward

• Pipeline interlock

– Hardware mechanisms for dynamic hazard resolution

– Must detect and enforce dependences at run time

Moscow Institute of Physics and Technology 24

MDSP Project | Intel Lab

Dependencies & Pipeline Hazards

• Data dependence (register or memory)

– True dependence (RAW)

– Instruction must wait for all required input operands

– Anti-dependence (WAR)

– Later write must not clobber a still-pending earlier read

– Output dependence (WAW)

– Earlier write must not clobber an already-finished later write

• Control dependence

– A “data dependency” on the instruction pointer

– Conditional branches cause uncertainty to instruction sequencing

• Resource conflicts

– Two instructions need the same device

Moscow Institute of Physics and Technology 25

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

Moscow Institute of Physics and Technology 26

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

 bge $10, $9, L2

 mul $15, $10, 4

 addu $24, $6, $15

 lw $25, 0($24)

 mul $13, $8, 4

 addu $14, $6, $13

 lw $15, 0($14)

 bge $25, $15, L2

L1:

 addu $10, $10, 1

 …

L2:

 addu $11, $11, -1

Moscow Institute of Physics and Technology 27

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

 bge $10, $9, L2

 mul $15, $10, 4

 addu $24, $6, $15

 lw $25, 0($24)

 mul $13, $8, 4

 addu $14, $6, $13

 lw $15, 0($14)

 bge $25, $15, L2

L1:

 addu $10, $10, 1

 …

L2:

 addu $11, $11, -1

Moscow Institute of Physics and Technology 28

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

 bge $10, $9, L2

 mul $15, $10, 4

 addu $24, $6, $15

 lw $25, 0($24)

 mul $13, $8, 4

 addu $14, $6, $13

 lw $15, 0($14)

 bge $25, $15, L2

L1:

 addu $10, $10, 1

 …

L2:

 addu $11, $11, -1

Moscow Institute of Physics and Technology 29

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

 bge $10, $9, L2

 mul $15, $10, 4

 addu $24, $6, $15

 lw $25, 0($24)

 mul $13, $8, 4

 addu $14, $6, $13

 lw $15, 0($14)

 bge $25, $15, L2

L1:

 addu $10, $10, 1

 …

L2:

 addu $11, $11, -1

Moscow Institute of Physics and Technology 30

MDSP Project | Intel Lab

Example: Quick Sort for MIPS

for (;(j<high)&&(array[j]<array[low]);++j);

$10 = j; $9 = high; $6 = array; $8 = low

 bge $10, $9, L2

 mul $15, $10, 4

 addu $24, $6, $15

 lw $25, 0($24)

 mul $13, $8, 4

 addu $14, $6, $13

 lw $15, 0($14)

 bge $25, $15, L2

L1:

 addu $10, $10, 1

 …

L2:

 addu $11, $11, -1

Moscow Institute of Physics and Technology 31

MDSP Project | Intel Lab

Pipeline: Data Hazards

Cycle 1 2 3 4 5 6 7 8 9

Instr1 Fetch Decode Read Execute Memory Write

Instr2 Fetch Decode Read Execute Memory Write

Instr3 Fetch Decode Read Execute Memory Write

Instr4 Fetch Decode Read Execute Memory Write

Instr5 Fetch Decode Read Execute Memory

Instr6 Fetch Decode Read Execute

• Instr2: _ → rk

• Instr3: rk → _

• How long should we stall for?

Moscow Institute of Physics and Technology 32

MDSP Project | Intel Lab

Pipeline: Stall on Data Hazard

Cycle 1 2 3 4 5 6 7 8 9

Instr1 Fetch Decode Read Execute Memory Write

Instr2 Fetch Decode Read Execute Memory Write

Instr3 Fetch Decode Stalled Read Execute

Instr4 Fetch Stalled Decode Read

Instr5 Stalled Fetch Decode

Instr6

• Instr2: _ → rk

• Bubble

• Bubble

• Bubble

• Instr3: rk → _

• Make the younger instruction wait until the
hazard has passed:
– Stop all up-stream stages

– Drain all down-stream stages

Moscow Institute of Physics and Technology 33

MDSP Project | Intel Lab

Pipeline: Forwarding

Cycle 1 2 3 4 5 6 7 8 9

Instr1 Fetch Decode Read Execute Memory Write

Instr2 Fetch Decode Read Execute Memory Write

Instr3 Fetch Decode Read Execute Memory Write

Instr4 Fetch Decode Read Execute Memory Write

Instr5 Fetch Decode Read Execute Memory

Instr6 Fetch Decode Read Execute

Moscow Institute of Physics and Technology 34

MDSP Project | Intel Lab

Limitations of Simple Pipelined Processors
(aka Scalar Processors)

• Upper bound on scalar pipeline throughput

– Limited by IPC = 1

• Inefficiencies of very deep pipelines

– Clocking overheads

– Longer hazards and stalls

• Performance lost due to in-order pipeline

– Unnecessary stalls

• Inefficient unification Into single pipeline

– Long latency for each instruction

– Hazards and associated stalls

Moscow Institute of Physics and Technology 35

MDSP Project | Intel Lab

Limitations of Deeper Pipelines

T

T/k

S

T/k

S

Unpipelined k-stage
pipelined

… (Code size) (Cycle) (CPI)

?

Eventually
limited by S

Moscow Institute of Physics and Technology 36

MDSP Project | Intel Lab

Put it All Together: Limits to Deeper Pipelines

Source: Ed Grochowski, 1997

Moscow Institute of Physics and Technology 37

MDSP Project | Intel Lab

Acknowledgements

• These slides contain material developed and copyright by:

– Grant McFarland (Intel)

– Christos Kozyrakis (Stanford University)

– Arvind (MIT)

– Joel Emer (Intel/MIT)

