
0018-9162/02/$17.00 © 2002 IEEE50 Computer

Simics: A Full System
Simulation
Platform

T hat all computers can simulate each other
is an immediate consequence of the theo-
retical work of Alan Turing and Alonzo
Church. Computer architects made direct
use of this property as early as the EDSAC

project in the 1950s,1 and simulation in its various
shapes and guises has been used to support the
design of computers ever since. Simulation offers
the traditional benefits of software construction: It
can arbitrarily parameterize, control, and inspect
the system it is modeling—the target system. Its
measurements are nonintrusive and deterministic.
Further, it provides a basis for automation: Multi-
ple simulator sessions can run in parallel, and ses-
sions can be fully scripted.

Naturally, we wish to simulate an entire system
and to do so with total accuracy—a perfect model.
There are obvious problems with seeking perfec-
tion, including cost, time to completion, specifica-
tion inaccuracies, and implementation errors. But
most important is the problem of workload real-
ism. In most cases, we do not know how to imple-
ment an accurate model with performance sufficient
to run realistic workloads. So, in practice, models
that attempt to be highly accurate end up running
very small “toy” workloads. The result is accurate
answers to irrelevant questions.

Simics is a platform for full system simulation,
which attempts to strike a balance between accu-
racy and performance. That is, it is sufficiently
abstract to achieve tolerable performance levels
with, at the same time, sufficient functional accu-
racy to run commercial workloads and sufficient
timing accuracy to interface to detailed hardware
models. Simics was one of the first academic pro-

jects in this area. It is the first commercial full sys-
tem simulator, and it is just beginning to demon-
strate the possibilities for system development.

FULL SYSTEM SIMULATION
Increasingly, we must design computer hardware or

software within the context of the final application.
A component’s value lies in its contribution to that
application. For example, no particular signal or exe-
cuted instruction provides value at Amazon.com’s
Web site. Instead, the value lies in letting a customer
expediently execute a search and make a purchase
decision. An end-user service like this is usually built
from a mixture of different manufacturers’ equip-
ment, in turn running a mixture of standard software
and proprietary components. The availability, per-
formance, and reliability of that end-user service moti-
vates the entire digital value chain up to that point.

Large projects aimed at developing high-end dig-
ital systems employ a variety of simulation-oriented
tools and methodologies. We can classify these along
two dimensions: scope (what is being modeled) and
level of abstraction (the abstraction level at which
it is modeled). Abstraction level, in turn, is best
viewed from two perspectives: the functional behav-
ior (“what”) and the timing behavior (“when”).

If the goal is to model realistic workloads, then
the scope must be the full system or we will not be
able to represent modern scenarios at all. The
abstraction level must be functionally low enough
to boot and run unmodified commercial operating
systems and industry benchmarks, and temporally
low enough to support hardware engineering.
However, the descent into more detailed levels of
abstraction must not result in an overall simulation

A full system simulator attempts to strike a balance between accuracy
and performance by modeling the complete final application and providing
a unified framework for hardware and software design within that context.

Peter S.
Magnusson
Magnus
Christensson
Jesper
Eskilson
Daniel
Forsgren
Gustav
Hållberg
Johan
Högberg
Fredrik
Larsson
Andreas
Moestedt
Bengt Werner
Virtutech AB,
Stockholm

C O V E R F E A T U R E

performance that precludes realistic workload
scale, in terms of data set sizes and execution
lengths. Today, a high-end workload scenario has
a total code base of 105 to 108 lines, with execution
lengths of 109 to 1012 instructions operating on a
physical memory of 108 to 1011 bytes, with backing
storage of 1010 to 1013 bytes.

Full system simulation supports the design, devel-
opment, and testing of computer hardware and
software within a simulation framework that
approximates the final application context. In this
case, “system” does not mean some arbitrary sub-
set of digital components running simple test code.
Referring to the Amazon.com example, it would
include multiple Windows/Linux desktop clients
connected over a network to a cluster of worksta-
tions and servers running Web software, databases,
and various application-specific tasks related to the
value proposition.

SIMICS OVERVIEW
Simics provides such a simulation platform. We

designed it from the ground up to be sufficiently
detailed to run unmodified operating systems
(including both embedded systems such as VxWorks
and general-purpose desktop/server systems such as
Solaris, Linux, Tru64, and Windows XP). It is fast
enough to run realistic workloads, including the
SPEC CPU2000 benchmark suite, database bench-
marks such as TPC-C, interactive desktop applica-
tions, and games. Simics is also sufficiently generic to
model embedded systems, desktop or set-top boxes,

telecom switches, multiprocessor systems, clusters,
and networks of all these items. At the same time,
Simics is flexible enough to support a broad variety
of tasks throughout the product development cycle,
including such seemingly disparate activities as
microprocessor design, operating system develop-
ment, fault injection studies, and hardware design
verification.

Simics simulates processors at the instruction-set
level, including the full supervisor state. Currently,
Simics supports models for UltraSparc, Alpha, x86,
x86-64 (Hammer), PowerPC, IPF (Itanium), MIPS,
and ARM. Simics is pure software, and current ports
include Linux (x86, PowerPC, and Alpha), Solaris/
UltraSparc, Tru64/Alpha, and Windows 2000/x86.

Figure 1 shows multiple instances of Simics sim-
ulating target systems based on a variety of differ-
ent processor architectures, each running a corre-
sponding operating system:

• An x86 (Pentium II) machine running Red Hat
6.2 and a KDE desktop (large window in the
center), showing two Netscape sessions con-
nected to actual, live Web servers;

• A second x86 machine (top right) showing the
Windows NT login screen;

• An UltraSparc II machine running Solaris 8
and MySQL (middle left);

• A Simics command line for an UltraSparc III
model before “powering on” (bottom left);

• An IPF (Itanium) model running Red Hat 7.2
(top left);

February 2002 51

Figure 1. Simics
simulation of target
systems based on
several processor
architectures. Each
simulated system
can run unmodified
operating systems
and applications.

52 Computer

• A PowerPC machine running VxWorks (top
center); and

• An x86-64 (Hammer) machine running
Windows XP (the simulated processor is run-
ning in 32-bit legacy mode), in the bottom
right window.

The window in the bottom-left corner of
Figure 1 shows the Simics command line. All other
Simics command windows are hidden. The screen
shot is taken from a dual-processor 933-MHz
Pentium III system with 512 Mbytes of memory,
running Red Hat Linux 7.2. All the Simics pro-
cesses are running on that same system.

In addition to processor models, Simics includes
device models accurate enough to run the real
firmware and device drivers. For example,
Simics/UltraSparc III will run the real Open Boot
PROM, and Simics/x86 will correctly install and
run Windows XP from the installation disks.

Simics views each target machine as a node, rep-
resenting a resource such as a Web server, a data-
base engine, a router, or a client. A single Simics
instance can simulate one or more nodes of the
same basic architecture. Heterogeneous nodes can
be connected into a network controlled by a tool
called Simics Central. In Figure 1, Simics Central
is used to connect the two Netscape sessions in the
central desktop to real Web servers.

Simics Central is a key component and allows
the creation of full-scale distributed systems. Figure
2 shows a sample network setup, demonstrating a
Web-based online discussion forum using a three-
tier database solution. The simulation is fast

enough to use interactively. Through the mouse or
a keyboard, users can give input to clients A or B,
which run within windows on the respective host
window systems. Simics Central acts as a router
that lets users traceroute into the simulated net-
work from the host environment (and vice versa).

With this setup, we can interactively browse the
different discussion groups on the Web server and
write new messages with acceptable response.
Retrieving the first Web page that includes a list of
all discussion groups takes approximately 30 sec-
onds.

The point here, of course, is that this is a fully
simulated setup. For example, any Simics session
can be stopped to single step, inspect state, and so
on, in which case the other Simics processes auto-
matically pause pending simulated global time
progress. The simulation can access memory traf-
fic anywhere, set breakpoints anywhere, and
modify any of the systems (such as adding new
instructions or caches). It can record and time-
stamp all user input—for example, keyboard and
mouse—and play back the entire session. The sim-
ulation can also save the entire setup to a check-
point and bring it up again in repeat sessions.

APPLICATIONS FOR FULL SYSTEM SIMULATION
Figure 3 shows the major task dependencies in

developing a complete high-end digital system.
Note that full system simulation relaxes many
dependencies by providing a single platform across
the development cycle. Each task can move from
an existing system model toward the intended next-
generation model at its own pace. In other words,
each task can begin within an abstract and—by
design—incorrect context, which gradually be-
comes more representative of the real future sys-
tem. The time-to-market gains and risk reductions
apply across the electronics industry.

Simics is currently being used commercially in all
the areas listed in Figure 3.

Microprocessor design
Next-generation processor design was an early

application area for simulation. Traditional trace-
based simulation techniques have some well-known
limitations that full system simulation tries to
resolve. Most importantly, multiprocessor work-
loads interact with the memory subsystem and the
operating system memory management and sched-

Host 1

Host 3

Host 4

Network of simulators
Simulated network

Simics/x86
Client A

Red Hat Linux 6.2
KDE

Netscape

Simics/Hammer
Client B
WinXP

Explorer

Host 2

Simics/Alpha
Web server

Red Hat Linux 6.0
Apache

mwforum

Simics Central

Simics/Ultra III
DB server
Solaris 8
MySQL

Figure 2. Sample
network setup for
Simics simulation.
The simulation is
distributed over four
host workstations,
and two clients are
talking to the Web
server, which has a
database back end.

uling in a manner that is difficult to capture in a
trace from a dissimilar setup.

Simics facilitates the inclusion of approximate
cache and I/O timing models, allowing a first-order
approximation of the interleaving of memory oper-
ations for a next-generation system. This approx-
imation serves as a platform for generating traces
for use as input to traditional cycle-accurate
microarchitecture models. Simics can be scaled to
full-blown server workloads such as TPC-C, but in
practice the workloads are frequently scaled down.

Some recent Simics processor models include
early support for out-of-order processing. These
models have unlimited execution units and renam-
ing registers, with a configurable reorder buffer and
dispatch rate, but no pipeline. Simics handles data
dependencies and can roll back when it encounters
exceptions. This rudimentary support for out-of-
order and multiple outstanding memory operations
is more in line with what occurs on real systems and
proposed future systems. We are extending this sup-
port to facilitate attaching a full-blown next-gener-
ation microarchitecture model, the philosophy
being that Simics provides the functional model, and
an investigator provides the timing model.

Memory studies
The simulated memory in Simics is represented

by one or more memory spaces, which usually cor-
respond to the address spaces found in a real sys-
tem. Typical examples include physical cacheable
memory, PCI bus spaces, and I/O address spaces.

Users can extend a memory space by connecting
a timing model to it, typically to affect how long
memory accesses take, but also to collect input to
cache and memory simulators or to generate a
trace.

Device development
Simics has an interface for communicating with

external programs. These programs can simulate
a single device, a memory bus, or anything con-
nected to a memory bus. Users can test a new device
by connecting it to Simics and having the Simics’
I/O traffic drive the device during the test.

Operating system emulation
Prior to the availability of a target operating sys-

tem, developers can run user-level applications on
a “bare bones” simulator by using an operating sys-
tem emulation layer. The OS emulation layer does
not need to execute on the simulated hardware
itself, which means we can isolate the behavior of
a single application. For example, in an emulated
OS environment, interrupt and exception handlers
will not interfere with the measurements of an appli-
cation’s cache behavior. The OS emulation layer can
be implemented in a scripting language. For educa-
tional purposes, a kernel implementation in a script-
ing language legibly demonstrates the OS internals
and provides an easy-to-modify platform for prac-
tical experiments and studies.

For example, in developing support for new
processors, work on compilers requires a very large
number of simulated cycles early in the project.
Simple OS emulation lets compiler designers run
user-level compiler regression tests independent of
progress on the “real” operating system.

OS development
Bringing up firmware and operating systems prior

to hardware availability is a classic use of full sys-
tem simulation. For example, SuSE has ported
Linux to AMD’s x86-64 architecture using the
Hammer version of Simics, and Wasabi Systems has

February 2002 53

Microprocessor
Memory subsystem

Compiler
Custom devices

Firmware
Operating system

Quality assurance (testing)

Microprocessor
Memory subsystem

Previous
devices

Previous
processor

Hybrid: Mixture of new
and old device models

Finalized
device models

Preliminary new
processor model

Finalized new
processor model

Compiler
Custom devices

Firmware
Operating system

Quality assurance (testing)

Previous
generation

Next
generation

Time-to-market gain

Figure 3.Task
dependencies for
developing a high-
end digital system
(top) are relaxed
in full system simu-
lation (middle),
reducing time to
market.

54 Computer

ported NetBSD in the same manner. By using old
devices together with a new processor architecture,
the core porting work can ignore most driver issues.

Even when the hardware is available, a simula-
tor offers classical benefits. For firmware develop-
ment, the ability to implement very specific break-
points is useful—such as stopping the execution
upon reads from specific control registers.

Debugging
A simulator provides a powerful set of methods

for locating bugs compared with traditional debug-
gers. Simics supports traditional debugging tasks,
like loading symbolic information, setting break-
points, and single stepping. Its access to the entire
system state, however, also lets developers inspect
the state of devices and the operating system.

Repeatability is a particularly useful feature for
debugging. Interactive keyboard and mouse input,
as well as network traffic, can be played back, caus-
ing the exact event flow that triggered a bug to be
repeated. Combining this information with a
checkpoint right before the point of failure greatly
facilitates time-efficient debugging.

Developers use scripting support to implement
advanced breakpoints. For example, write break-
points can check lock semantics around data struc-
tures, and timing breakpoints can trigger when two
program points are executed too far apart.

Developers can also attach external debuggers.
The Simics “gdb-remote” module implements the
TCP/IP remote debugging protocol of the GNU
Debugger (gdb). Since the remote gdb session works
concurrently with Simics’ command line, users can
combine a well-known debugger interface with
other Simics features.

High-availability testing
Simics supports tests of system characteristics

such as reliability, performance, and fault tolerance
that could not be tested, in any practical way, with-

out simulation. A simulator can modify conditions
almost arbitrarily to introduce failure behaviors.
This has obvious benefits compared with testing
the physical hardware. It provides a higher level of
information about error paths, and it can replicate
discovered errors. In addition, the testing can be
automated by using checkpoints and scripts, and
the cost is much lower.

SIMICS IMPLEMENTATION
Figure 4 shows an overview of the Simics archi-

tecture, which has been under development for more
than a decade. The current version has absorbed
more than 50 person-years of development and con-
stitutes close to one million lines of code.

Simics Central
Simics Central synchronizes the virtual time

between Simics simulators and distributes simu-
lated traffic between the nodes. It imposes a mini-
mum latency on every message passed, allowing the
entire distributed simulation to be fully determin-
istic. To overlap host network latency with simu-
lation, Simics Central uses a two-phased clocking
scheme to pass synchronization messages.

Simics Central currently supports Ethernet net-
works, but other types of networks can be added
using a modular infrastructure. The network
adapter modules (such as AM79C960) connect to
the Ethernet-central module in Simics Central.

Simics runs simulations as fast as it can, but
Simics Central will halt the simulation if one
process consumes cycles slower than the rest. In
other words, the network simulation speed is equiv-
alent to the speed of the slowest Simics process.

Configuration
Simics uses a simple object-oriented configura-

tion language to describe the target system. An
object corresponds to a processor or device in the
target machine or to a “virtual” object such as vir-

Local
disk

Real
network

VHDL
simulator

Other
Simics
processSimics

Central

Graphics

Ethernet

SCSI

Memory bus

Simics

Devices

Disks

Memory management unit

Command-line interface

Scripting

Tracing

Debugger

Cache models

Configuration

Target machine

Event handling

Memory

Interpreter

Applications

Operating
system

Firmware

Pr
og

ra
m

m
in

g
in

te
rf

ac
e

(S
im

ic
s

AP
I)

Figure 4. Simics
architecture. A core
module offers basic
simulation features
such as processor
instruction set and
memory. A broad
application pro-
gramming interface
makes Simics a
“platform.” The API
is used for adding
specific device mod-
els and intrinsic
components such as
a command line.

tual-to-physical memory mappings and disk
images. The objects are instantiated from classes
that are defined by runtime-loadable modules. To
add a device, developers write a loadable module
using the Simics application programming inter-
face (API) to implement a class, then they define an
object of that class in the configuration file.

For example, the following listing shows parts
of a configuration file for a future desktop PC with
256 Mbytes of memory.

OBJECT cpu0 TYPE x86-hammer
{

freq_mhz: 3500
physical_memory: phys_mem0

}
OBJECT phys_mem0 TYPE memory-space
{

map: ((0xa0000, vga0, 1, 0,
0x20000),

(0x100000, mem0, 0, 0x100000,
0xff00000),

...

}
OBJECT con0 TYPE gfx-console
{

queue: cpu0
x-size: 720
y-size: 400
keyboard: kbd0
mouse: kbd0

}

The file defines objects for the processor, physi-
cal memory space, and graphical console. The con-
figuration system implements checkpoints by
saving all objects and their attributes to disk in a
mostly human-readable text format.

CLI and scripting
Simics is controlled primarily through the com-

mand line interface (CLI), which is similar to the front
end of a debugger. Simics also has a built-in Python
runtime environment, which loads Python scripts and
executes them directly from the CLI. In fact, the CLI

is written in Python, using the Simics API.
Scripts can be tied to certain events, such as

translation look-aside buffer (TLB) misses and I/O
operations. The code in Figure 5 is a Python exam-
ple of a conditional breakpoint. It installs a call-
back handler, which is called when a breakpoint is
triggered (in this case, when the instruction on
address 0x000f2501 executes). If register EAX is
greater than register ECX, the handler signals a
break, and the simulation will stop; otherwise, the
simulation continues. Note how all objects reside
in the conf module and are mapped to Python
objects.

Devices
For each target, Simics supports a device set that

enables firmware and operating systems to boot and
run. For the x86 (“PC”) target, for example, Simics
supports legacy ISA devices such as a timer (8254),
a floppy controller (82077), a keyboard/mouse con-
troller (8042), direct memory access (8237), an
interrupt controller (8259), and a real-time clock/
nonvolatile RAM (DS12887). Other Simics/x86
devices include an interrupt controller (APIC, I/O-
APIC), a host-to-PCI bridge (82443BX), an IDE
controller, a VGA adapter, an accelerated 3D graph-
ics (Voodoo3-based) card, and Ethernet adapters
(AM79C960 and DEC21140A).

Target processors usually imply a family of
CPUs—for example, the x86 includes 486sx,
Pentium, Pentium MMX, Pentium Pro, and the
Pentium II. Simics supports multiprocessor system
models for all targets.

Interfacing to other simulators
As the memory bus in Figure 4 indicates, Simics

can interface to a clock-cycle-accurate model writ-
ten in a hardware description language (HDL) such
as Verilog.

Verilog has defined interfaces, which allows it to
link C functions that are called from HDL compo-
nents. Thus, Verilog can link the Simics communi-
cation layer into HDL, and the HDL program can
drive Simics by telling it to advance simulation a
fixed time unit, typically one clock cycle at a time.
When signals pass between Simics and the HDL sim-

February 2002 55

from sim_core import *
import conf

def break_handler(id):
if conf.cpu0.eax > conf.cpu0.ecx:

raise SimExc_Break

id = SIM_breakpoint(conf.phys_mem0,Break_Physical, Break_Execute,
0x000f2501, 1, 0)

SIM_hap_register_callback(“Core_Breakpoint” ,break_handler, id)

Figure 5. Sample
conditional break-
point written in
Python. The code
installs a callback
handler, which is
called when the
instruction at
0x000f2501
executes.

56 Computer

ulator, their respective abstraction levels must be
translated. For example, Simics models memory
reads as atomic, so if the HDL simulator models a
split-transaction memory bus, it must break the read
into a read request and a data-reply bus transaction.

Also, Simics supports multiple outstanding mem-
ory transactions to generate realistic traffic patterns
by keeping a list of the instructions it is currently
executing. When data arrives at Simics from the
HDL model, it triggers execution of previously
stalled instructions in the same way a modern out-
of-order processor does. Simics uses this out-of-
order support to generate a reasonable stream of
memory traffic to the external simulator.

Simics application programming interface
A major feature of Simics is its extensibility,

allowing users to write new plug-in device models,
add new commands, or write control and analysis
routines. The Simics API has more than 200
exported functions, several data types, and more
than 50 predefined interfaces. These interfaces are
collections of function pointers, similar to method
tables, that Simics uses for all interobject commu-
nication. The API is written in C, but it is also
mechanically exported to Python.

Memory
Memory operations are the biggest performance

challenge for a full system simulator. Simics uses a
simulator translation cache (STC) to speed up loads
and stores and instruction fetches. These caches
store pointers to simulated memory and are
indexed by virtual addresses. A hit in the STC guar-
antees that there are no side effects, such as an
alignment exception, TLB miss, cache miss, or sim-
ulator breakpoint. For instruction fetches, the STC
stores pairs of addresses, representing branch arcs
that can be safely traversed.

Essentially, the STC works as a cache for the inter-

preter, with the common case (that is, an STC hit)
sufficiently simple to be inlined in the interpreter
kernel. The need for generality is a significant com-
plication: Simics needs to handle various combina-
tions of host-target endianity and address space
sizes, for example. Altogether, the STC design may
be the most complex construct in the simulator.

Threaded-code interpreter
At the center of any full system simulator is an

interpreter kernel. The simulated CPU models
include the entire software-visible spectrum—
exception-interrupt models, control registers, and
so on. Some processors include microcode-like fea-
tures; thus Simics/Alpha supports PAL (Privileged
Architecture Library) code.

There are many efficient ways to write inter-
preters, including threaded-code interpreters and
variations of runtime code generation. Implementing
an efficient simulator by hand is a labor-intensive
and error-prone task. We developed a specification
language, SimGen, to encode various aspects of the
target instruction-set architecture. SimGen includes
the syntax and encoding of instructions, as well as C
code for the semantics and high-level attributes used
with timing models. Optimizations include a
sequence of partial evaluations, some suggested in
the specification and some made automatically.

Figure 6 shows the spec for an IA32/x86-64 add-
to-left instruction. This example omits all macro
definitions, which would total more than 100 lines.
SimGen uses special macros to express the repeti-
tive, combinatorial, and contextual nature of
instruction-set architectures. The SimGen tool gen-
erates all permitted combinations, and it uses
instruction-frequency statistics to guide the gener-
ation of specialized service routines, the output
being an interpreter in C. Essentially, the Simics ker-
nel is synthesized from a high-level specification.

Event handling
Simics supports a general event-handling mech-

anism. Each processor object has two event queues:
a step queue and a time queue.

In the step queue, events appear after a number
of program counter steps. The step count is the sum
of successfully completed instructions, issued
instructions that caused exceptions, and interrupts
handled at the system level.

The time queue has a resolution of a processor
clock cycle, which is a fixed time unit set in the con-
figuration (such as in object cpu0 mentioned
above). Simics can schedule multiple events at the
same cycle-step, and it handles the queue in FIFO

Figure 6. SimGen
spec for an IA32/
x86-64 add-to-left
instruction.

// IA32/x86-64 add to left instruction
instruction ADD_L({REG}, {REG_OR_MEM})

pattern
op_h2 == 0 && opl == 0 && d == 1

&& opm == 0
syntax

“add {REG},{REG_OR_MEM}”
semantics

#{
ireg_t op1 = {REG};
ireg_t op2 = {REG_OR_MEM};
ireg_t dst = op1 + op2;
EFLAGS_ADD(dst,op1,op2,w,os);
SET({REG_W}, dst);
#}

attributes
type = IT_ALU

order. When posting an event to the time queue,
Simics can synchronize the time queues of all
processors for events that affect global state. This
dual-queue design allows Simics to mix event-dri-
ven and time-driven components.

PERFORMANCE
Table 1 summarizes Simics performance. For sim-

plicity, we have chosen a variety of OS boot work-
loads that model seven different processor archi-
tectures: Alpha EV5, UltraSparc II and UltraSparc
III, Intel Pentium II, AMD x86-64 Hammer, Intel
IPF (Itanium), and PowerPC 750. For comparabil-
ity, we performed all measurements on an Intel P-III
933-MHz host with 512 Mbytes of RAM running
Linux.

To demonstrate scalability, Table 2 shows times
to boot Solaris 8 on simulated Ultra II Enterprise
server systems to multiuser login prompt for vari-
ous configuration sizes. The host is a 750-MHz
UltraSparc III system. The time of a Solaris boot
depends on the OS version, what devices are pre-
sent, the amount of memory, the clock frequency,
system services, and so on. Millions of instructions
per second (MIPS) on multiprocessor models are
higher because we disable idle CPUs during the first
phase of the boot.

For the out-of-order versions of the UltraSparc,
performance is obviously much lower. In the So-
laris 8 boot example, the out-of-order version sim-
ulating a 16-Kbyte data cache runs at 0.3 MIPS
compared to the 6.62 MIPS in Table 2.

RELATED SYSTEM SIMULATION WORK
IBM developed the first modern emulator,2 which

permitted programs written for the IBM 7070 to
run on one of the larger System/360 computers (for
a good summary of early work on emulation and
simulation in industry, see the 1979 article by
Michael Canon and colleagues3).

Early work in academia included the PDP-11 emu-
lator developed by John Doyle and Ken Mandelberg4

and the implementation of g88 by Robert Bedichek.5

The g88 implementation was subsequently placed in
the public domain, and the design details were pub-
lished. This implementation modeled a uniprocessor
M88100-based system with a mixture of real and
pseudo devices, and it could boot an operating sys-
tem (specifically, Unix). A predecessor of Simics, gsim,
begun in 1991, was based on g88 and extended to
include support for multiple processors with shared
physical memory.6 In 1994, the gsim simulator was
rewritten as a multiprocessor Sparc V8 model, result-
ing in the first version of Simics.

More recently, SimOS has modeled large parts
of a MIPS-based multiprocessor,7 and it has booted
and run a modified Irix kernel. SimOS and Simics
have pursued similar goals and have arrived at sim-
ilar solutions on many issues. Indeed, they have
been developed partly in parallel. For example, the
current scripting platform in Simics originated in
the SimOS work on annotations.8

S imics is distinguished from earlier simulation
work by implementing “best practices.”
Many of the possibilities of full system simu-

lation have been obvious to practitioners in both
academia and industry for quite some time, per-
haps decades, but Simics supports more of these
possibilities within a single framework than other
tools.

For example, running as realistic code as possi-
ble is important. In contrast to similar tools that
we are aware of, Simics can run actual firmware
and completely unmodified kernel and driver code.
In fact, researchers are using Simics to develop and

February 2002 57

Table 1. Simics performance of target systems for a variety of operating-
system boot workloads.

Target Boot workload Instructions Time (sec) MIPS

Alpha-ev5 Tru64 2,112,119,247 354 5.9
Alpha-ev5 Linux 1,201,600,120 164 7.3
Sparc-u2 Solaris 81 1,597,537,438 284 5.6
Sparc-u3 Solaris 81 6,155,835,717 987 6.2
x86-p2 Linux2 1,299,639,608 227 5.7
x86-p2 Windows XP 3,129,351,000 1,518 2.1
x86-64 Linux2 1,299,639,608 285 4.5
Itanium Linux 4,644,372,142 1,470 3.2
PPC-750 VxWorks 1,179,516,468 136 8.7
PPC-750 Linux3 498,836,969 53 9.3

1 The configurations for the UltraSparc machines differ in more ways than just the
CPU. The Sparc-u2 was configured to simulate an enterprise server, while the Sparc-
u3 was configured as one of Sun’s new “Sun Fire” servers (Serengeti). The different
CPU clock frequencies configured on the machines (750 MHz on Sparc-u3 and 168
MHz on Sparc-u2) account for most of the difference in the number of simulated
instructions.
2 These are the same benchmarks, but Simics/x86-64 runs in ”legacy mode,” which
means that it is IA32 compatible.
3 This is a minimal Linux installation; no services are started.

Table 2. Times to boot Solaris 8 on simulated Ultra II server systems.

No. CPUs Instructions/CPU Time (sec) MIPS MIPS/CPU

1 3,032,350,964 443 6.62 6.62
2 2,957,823,001 505 11.35 5.68
4 2,952,203,000 610 19.17 4.79
8 2,989,656,000 931 25.12 3.14

16 3,068,869,000 1,340 36.29 2.27
30 3,212,321,000 2,554 37.41 1.25

58 Computer

test firmware for several future desktop and server
systems.

Simics is unique in being able to run a heteroge-
neous network of systems from different vendors
within the same framework. Simics is a fast tool
with an abstraction level that makes it easy to add
new components and leverage older ones. Simics
offers a practical platform, with a rich API and a
powerful scripting environment for use in a broad
range of applications.

We believe Simics marks the starting point for a
different way of designing, testing, and imple-
menting high-end digital systems. �

References
1. S. Gill, “The Diagnosis of Mistakes in Programmes

on the EDSAC,” Proc. Royal Society Series A, Math-
ematical and Physical Sciences, vol. 206, Cambridge
Univ. Press, Cambridge, UK, 1951, pp. 538-554.

2. S. Tucker, “Emulation of Large Systems,” Comm.
ACM 8, pp. 753-761. As cited in E.W. Pugh, Build-
ing IBM, MIT Press, Cambridge, Mass., 1995.

3. M.D. Canon et al., “A Virtual Machine Emulator for
Performance Evaluation,” Comm. ACM, Feb. 1979,
pp. 71-80.

4. J.K. Doyle and K. Mandelberg, ”A Portable PDP-11
Simulator,” Software Practice and Experience, Nov.
1984, pp. 1047-1059.

5. R.C. Bedichek, “Some Efficient Architecture Simula-
tion Techniques,” Proc. Winter 90 Usenix Conf.,
Usenix Assoc., Berkeley, Calif., 1990, pp. 53-63.

6. P.S. Magnusson, “A Design for Efficient Simulation
of a Multiprocessor,” Proc. Modeling, Analysis, and
Simulation of Computer Systems (MASCOTS 93),
IEEE CS Press, Los Alamitos, Calif., 1993, pp. 69-78.

7. M. Rosenblum et al., “Using the SimOS Machine
Simulator to Study Complex Computer Systems,”
ACM Trans. Modeling and Computer Simulation
(TOMACS), Special Issue on Computer Simulation,
Jan. 1997, pp. 78-103.

8. S.A. Herrod, Using Complete Machine Simulation to
Understand Computer System Behavior, doctoral
dissertation, Stanford Univ., 1998.

Peter S. Magnusson is CEO of Virtutech. His tech-
nical interests include simulation, virtual machines,
emulation, binary translation, and advanced soft-
ware engineering. He received an MS in computer
science from the Swedish Royal Institute of Tech-
nology and an MBA from Stockholm School of
Economics. He is a member of the ACM and the
IEEE. Contact him at psm@virtutech.com.

Magnus Christensson is a member of the technical
staff at Virtutech. His research interests include
dynamic code generation and computer architec-
ture. He received an MS in computer science from
the Swedish Royal Institute of Technology. He is a
member of the ACM and the IEEE. Contact him
at mch@virtutech.com.

Jesper Eskilson is a member of the technical staff at
Virtutech. His technical interests include program-
ming language design, user interfaces, and constraint
programming. He has an MS in computer science
from Uppsala University. He is a member of the
ACM. Contact him at jojo@virtutech.com.

Daniel Forsgren is a member of the technical staff
at Virtutech. His interests include computer archi-
tecture and operating systems. He has studied
applied physics and electrical engineering at
Linköping Institute of Technology. He is a mem-
ber of the ACM. Contact him at daniel@
virtutech.com.

Gustav Hållberg is a member of the technical staff
at Virtutech. His technical interests include artificial
languages and application design. He studied engi-
neering physics at the Swedish Royal Institute of
Technology. Contact him at gustav@virtutech.
com.

Johan Högberg is a member of the technical staff at
Virtutech. He received a University Certificate in
computer technology from Karlstad University.
Contact him at johan@virtutech.com.

Fredrik Larsson is a member of the technical staff
at Virtutech. His technical interests include com-
puter architecture and programming language
design. He received an MS in computer science
from Uppsala University. Contact him at fla@
virtutech.com.

Andreas Moestedt is a member of the technical staff
at Virtutech. His interests include computer archi-
tecture and operating systems. He received an MS
in computer science and engineering from Lund
University. He is a member of the ACM. Contact
him at am@virtutech.com.

Bengt Werner is CTO at Virtutech. His research
interests include accurate modeling and efficient
simulation of digital systems. He received an MS in
computer science and engineering from Lund Uni-
versity. Contact him at werner@virtutech.com.

